skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1807857

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate and report the optical and laser characteristics of a ytterbium-doped transverse Anderson localizing optical fiber to develop a fundamental understanding of the light propagation, generation, and amplification processes in this novel fiber. Ultimately, the goal based on the measurements and calculations conducted herein is to design and build a random fiber laser with a highly directional beam. The measurements are based on certain observations of the laser pump propagation and amplified spontaneous emission generation in this fiber. Judicious approximations are used in the propagation equations to obtain the relevant desired parameters in simple theoretical fits to experimental observations, without resorting to speculations based on the intended construction from the fiber preform. 
    more » « less
  2. An all-solid transverse Anderson localizing optical fiber (TALOF) was fabricated using a novel combination of the stack-and-draw and molten core methods. Strong Anderson localization is observed in multiple regions of the fiber cross section associated with the higher index strontium aluminosilicate phases randomly arranged within a pure silica matrix. Further, to the best of our knowledge, nonlinear four-wave mixing is reported for the first time in a TALOF. 
    more » « less