We investigate and report the optical and laser characteristics of a ytterbium-doped transverse Anderson localizing optical fiber to develop a fundamental understanding of the light propagation, generation, and amplification processes in this novel fiber. Ultimately, the goal based on the measurements and calculations conducted herein is to design and build a random fiber laser with a highly directional beam. The measurements are based on certain observations of the laser pump propagation and amplified spontaneous emission generation in this fiber. Judicious approximations are used in the propagation equations to obtain the relevant desired parameters in simple theoretical fits to experimental observations, without resorting to speculations based on the intended construction from the fiber preform.
more »
« less
Observation of optical nonlinearities in an all-solid transverse Anderson localizing optical fiber
An all-solid transverse Anderson localizing optical fiber (TALOF) was fabricated using a novel combination of the stack-and-draw and molten core methods. Strong Anderson localization is observed in multiple regions of the fiber cross section associated with the higher index strontium aluminosilicate phases randomly arranged within a pure silica matrix. Further, to the best of our knowledge, nonlinear four-wave mixing is reported for the first time in a TALOF.
more »
« less
- PAR ID:
- 10130940
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 3
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 599
- Size(s):
- Article No. 599
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nearly a decade ago, transverse Anderson localization was observed for the first time in an optical fiber with a random transverse refractive index profile. This started the development of a whole new class of optical fibers that guide light, not in a conventional core-cladding setting based on total internal reflection, but utilizing Anderson localization, where light can guide at any location across the transverse profile of the fiber. These fibers have since been used successfully in high-quality endoscopic image transport. They also show interesting nonlinear and active (lasing) properties with promising applications. This review will cover a brief history of these fibers with personal accounts of the events that led to their development in our research groups. It will then follow with recent progress and future perspectives on science and applications of these fibers.more » « less
-
Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} .more » « less
-
Abstract Highly stretchable fiber sensors have attracted significant interest recently due to their applications in wearable electronics, human–machine interfaces, and biomedical implantable devices. Here, a scalable approach for fabricating stretchable multifunctional electrical and optical fiber sensors using a thermal drawing process is reported. The fiber sensors can sustain at least 580% strain and up to 750% strain with a helix structure. The electrical fiber sensor simultaneously exhibits ultrahigh stretchability (400%), high gauge factors (≈1960), and excellent durability during 1000 stretching and bending cycles. It is also shown that the stretchable step‐index optical fibers facilitate detection of bending and stretching deformation through changes in the light transmission. By combining both electrical and optical detection schemes, multifunctional fibers can be used for quantifying and distinguishing multimodal deformations such as bending and stretching. The fibers’ utility and functionality in sensing and control applications are demonstrated in a smart glove for controlling a virtual hand model, a wrist brace for wrist motion tracking, fiber meshes for strain mapping, and real‐time monitoring of multiaxial expansion and shrinkage of porcine bladders. These results demonstrate that the fiber sensors can be promising candidates for smart textiles, robotics, prosthetics, and biomedical implantable devices.more » « less
An official website of the United States government
