skip to main content


Search for: All records

Award ID contains: 1808342

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization. 
    more » « less
  2. null (Ed.)
    Entropically driven self-assembly of hard anisotropic particles, where particle shape gives rise to emergent valencies, provides a useful perspective for the design of nanoparticle and colloidal systems. Hard particles self-assemble into a rich variety of crystal structures, ranging in complexity from simple close-packed structures to structures with 432 particles in the unit cell. Entropic crystallization of open structures, however, is missing from this landscape. Here, we report the self-assembly of a two-dimensional binary mixture of hard particles into an open host–guest structure, where nonconvex, triangular host particles form a honeycomb lattice that encapsulates smaller guest particles. Notably, this open structure forms in the absence of enthalpic interactions by effectively splitting the structure into low- and high-entropy sublattices. This is the first such structure to be reported in a two-dimensional athermal system. We discuss the observed compartmentalization of entropy in this system, and show that the effect of the size of the guest particle on the stability of the structure gives rise to a reentrant phase behavior. This reentrance suggests the possibility for a reconfigurable colloidal material, and we provide a proof-of-concept by showing the assembly behavior while changing the size of the guest particles in situ . Our findings provide a strategy for designing open colloidal crystals, as well as binary systems that exhibit co-crystallization, which have been elusive thus far. 
    more » « less
  3. null (Ed.)
    Quasicrystals have been discovered in a variety of materials ranging from metals to polymers. Yet, why and how they form is incompletely understood. In situ transmission electron microscopy of alloy quasicrystal formation in metals suggests an error-and-repair mechanism, whereby quasiperiodic crystals grow imperfectly with phason strain present, and only perfect themselves later into a high-quality quasicrystal with negligible phason strain. The growth mechanism has not been investigated for other types of quasicrystals, such as dendrimeric, polymeric, or colloidal quasicrystals. Soft-matter quasicrystals typically result from entropic, rather than energetic, interactions, and are not usually grown (either in laboratories or in silico ) into large-volume quasicrystals. Consequently, it is unknown whether soft-matter quasicrystals form with the high degree of structural quality found in metal alloy quasicrystals. Here, we investigate the entropically driven growth of colloidal dodecagonal quasicrystals (DQCs) via computer simulation of systems of hard tetrahedra, which are simple models for anisotropic colloidal particles that form a quasicrystal. Using a pattern recognition algorithm applied to particle trajectories during DQC growth, we analyze phason strain to follow the evolution of quasiperiodic order. As in alloys, we observe high structural quality; DQCs with low phason strain crystallize directly from the melt and only require minimal further reduction of phason strain. We also observe transformation from a denser approximant to the DQC via continuous phason strain relaxation. Our results demonstrate that soft-matter quasicrystals dominated by entropy can be thermodynamically stable and grown with high structural quality––just like their alloy quasicrystal counterparts. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)