skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot via digital alchemy
The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization.  more » « less
Award ID(s):
1808342
PAR ID:
10439768
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
15
ISSN:
1744-683X
Page Range / eLocation ID:
2726 to 2736
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization. 
    more » « less
  2. Open colloidal lattices possessing omnidirectional photonic bandgaps in the visible or near-visible regime are attractive optical materials the realization of which has remained elusive. We report the use of an inverse design strategy termed landscape engineering that rationally sculpts the free energy self-assembly landscape using evolutionary algorithms to discover anisotropic patchy colloids capable of spontaneously assembling pyrochlore and cubic diamond lattices possessing complete photonic bandgaps. We validate the designs in computer simulations to demonstrate the defect-free formation of these lattices via a two-stage hierarchical assembly mechanism. Our approach demonstrates a principled strategy for the inverse design of self-assembling colloids for the bottom-up fabrication of desired crystal lattices. 
    more » « less
  3. Using ground-state and relative-entropy based inverse design strategies, isotropic interactions with an attractive well are determined to stabilize and promote assembly of particles into two-dimensional square, honeycomb, and kagome lattices. The design rules inferred from these results are discussed and validated in the discovery of interactions that favor assembly of the highly open truncated-square and truncated-hexagonal lattices. 
    more » « less
  4. Abstract We propose a general framework for solving inverse self-assembly problems, i.e. designing interactions between elementary units such that they assemble spontaneously into a predetermined structure. Our approach uses patchy particles as building blocks, where the different units bind at specific interaction sites (the patches), and we exploit the possibility of having mixtures with several components. The interaction rules between the patches is determined by transforming the combinatorial problem into a Boolean satisfiability problem (SAT) which searches for solutions where all bonds are formed in the target structure. Additional conditions, such as the non-satisfiability of competing structures (e.g. metastable states) can be imposed, allowing to effectively design the assembly path in order to avoid kinetic traps. We demonstrate this approach by designing and numerically simulating a cubic diamond structure from four particle species that assembles without competition from other polymorphs, including the hexagonal structure. 
    more » « less
  5. We report simulation studies on the self-assembly behavior of five different types of lobed patchy particles of different shapes (snowman, dumbbell, trigonal planar, square planar, and tetrahedral). Inspired by an experimental method of synthesizing patchy particles (Wang et al., Nature, 2012, 491:51-55), we control the lobe size indirectly by gradually varying the seed diameter and study its effect on self-assembled structures at different temperatures. Snowman shaped particles self-assemble only at a lower temperature and form two-dimensional sheets, elongated micelles, and spherical micelles, depending on the seed diameter. Each of the four other lobed particles self-assemble into four distinct morphologies (random aggregates, spherical aggregates, liquid droplets, and crystalline structures) for a given lobe size and temperature. We observed temperature-dependent transitions between two morphologies depending on the type of the lobed particle. The self-assembled structures formed by these four types of particles are porous. We show that their porosities can be tuned by controlling the lobe size and temperature. 
    more » « less