skip to main content


Search for: All records

Award ID contains: 1809293

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Continuous device downsizing and circuit complexity have motivated atomic-scale tuning of memristors. Herein, we report atomically tunable Pd/M1/M2/Al ultrathin (<2.5 nm M1/M2 bilayer oxide thickness) memristors using in vacuo atomic layer deposition by controlled insertion of MgO atomic layers into pristine Al2O3atomic layer stacks guided by theory predicted Fermi energy lowering leading to a higher high state resistance (HRS) and a reduction of oxygen vacancy formation energy. Excitingly, memristors with HRS and on/off ratio increasing exponentially with M1/M2 thickness in the range 1.2–2.4 nm have been obtained, illustrating tunneling mechanism and tunable on/off ratio in the range of 10–104. Further dynamic tunability of on/off ratio by electric field is possible by designing of the atomic M2 layer and M1/M2 interface. This result probes ways in the design of memristors with atomically tunable performance parameters.

     
    more » « less
  2. Abstract

    Instability of colloidal iodine‐based inorganic perovskite CsPbX3(X = Cl, Br, I) nanocrystals (IPNCs) represents a major obstacle in lead‐halide IPNC research and application. Herein, a ligand‐anchoring process is reported that enables significantly improved colloidal stability of the iodine‐based IPNCs for over 10 months in ambient. Apart from the previous efforts in searching for strong binding ligands to cap the IPNCs to incrementally reduce the exposure of the IPNC surface to the harsh colloidal environment, the ligand‐anchoring method demonstrates that such an exposure can be reduced substantially by suppressing the dynamic ligand exchange around the colloidal IPNCs. In the IPNC synthesis solution with common oleic acid (OA) and oleylamine (OLA) ligands with relative weak binding to IPNCs, a systematic reduction of the ligand concentration using hexane by an order of magnitude has shown to be effective in achieving OA/OLA ligand‐anchored iodine‐based IPNCs with superior stability as confirmed in optical absorption, photoluminescence,1H solution nuclear magnetic resonance spectroscopy, and photoresponse. This result has revealed that the intermittent exposure of the IPNC surface during the dynamic ligand exchange is a primary mechanism underlying the colloidal IPNC instability, which can be resolved in the ligand‐anchoring process by suppressing such dynamic activities.

     
    more » « less
  3. Abstract

    Localized surface plasmon resonance (LSPR) is shown to be effective in trapping light for enhanced light absorption and hence performance in photonic and optoelectronic devices. Implementation of LSPR in all‐inorganic perovskite nanocrystals (PNCs) is particularly important considering their unique advantages in optoelectronics. Motivated by this, the first success in colloidal synthesis of AuCu/CsPbCl3core/shell PNCs and observation of enhanced light absorption by the perovskite CsPbCl3shell of thickness in the range of 2–4 nm, enabled by the LSPR AuCu core of an average diameter of 7.1 nm, is reported. This enhanced light absorption leads to a remarkably enhanced photoresponse in PNCs/graphene nanohybrid photodetectors using the AuCu/CsPbCl3core/shell PNCs, by more than 30 times as compared to the counterparts with CsPbCl3PNCs only (8–12 nm in dimension). This result illustrates the feasibility in implementation of LSPR light trapping directly in core/shell PNCs for high‐performance optoelectronics.

     
    more » « less
  4. Abstract

    Cation–π interactions between molecules and graphene are known to have a profound effect on the properties of the molecule/graphene nanohybrids and motivate this study to quantify the attachment of the rhodamine 6G (R6G) dye molecules on graphene and the photocarrier transfer channel formed across the R6G/graphene interface. By increasing the R6G areal density of the R6G on graphene field‐effect transistor (GFET) from 0 up to ≈3.6 × 1013cm−2, a linear shift of the Dirac point of the graphene from originally 1.2 V (p‐doped) to −1 V (n‐doped) is revealed with increasing number of R6G molecules. This indicates that the attachment of the R6G molecules on graphene is determined by the cation–π interaction between the NH+ in R6G and π electrons in graphene. Furthermore, a linear dependence of the photoresponse on the R6G molecule concentration to 550 nm illumination is observed on the R6G/graphene nanohybrid, suggesting that the cation–π interaction controls the R6G attachment configuration to graphene to allow formation of identical photocarrier transfer channels. On R6G/graphene nanohybrid with 7.2 × 107R6G molecules, high responsivity up to 5.15 × 102A W−1is obtained, suggesting molecule/graphene nanohybrids are promising for high‐performance optoelectronics.

     
    more » « less
  5. Abstract

    Van der Waals (vdW) heterostructures of 2D atomically thin layered materials (2DLMs) provide a unique platform for constructing optoelectronic devices by staking 2D atomic sheets with unprecedented functionality and performance. A particular advantage of these vdW heterostructures is the energy band engineering of 2DLMs to achieve interlayer excitons through type‐II band alignment, enabling spectral range exceeding the cutoff wavelengths of the individual atomic sheets in the 2DLM. Herein, the high performance of GaTe/InSe vdW heterostructures device is reported. Unexpectedly, this GaTe/InSe vdWs p–n junction exhibits extraordinary detectivity in a new shortwave infrared (SWIR) spectrum, which is forbidden by the respective bandgap limits for the constituent GaTe (bandgap of ≈1.70 eV in both the bulk and monolayer) and InSe (bandgap of ≈1.20–1.80 eV depending on thickness reduction from bulk to monolayer). Specifically, the uncooled SWIR detectivity is up to ≈1014Jones at 1064 nm and ≈1012Jones at 1550 nm, respectively. This result indicates that the 2DLM vdW heterostructures with type‐II band alignment produce an interlayer exciton transition, and this advantage can offer a viable strategy for devising high‐performance optoelectronics in SWIR or even longer wavelengths beyond the individual limitations of the bandgaps and heteroepitaxy of the constituent atomic layers.

     
    more » « less
  6. Abstract

    Lateral p–n junctions take the unique advantages of 2D materials, such as graphene, to enable single‐atomic layer microelectronics. A major challenge in fabrication of the lateral p–n junctions is in the control of electronic properties on a 2D atomic sheet with nanometer precision. Herein, a facile approach that employs decoration of molecular anions of bis‐(trifluoromethylsulfonyl)‐imide (TFSI) to generate p‐doping on the otherwise n‐doped graphene by positively polarized surface electric dipoles (pointing toward the surface) formed on the surface oxygen‐deficient layer “intrinsic” to an oxide ferroelectric back gate is reported. The characteristic double conductance minimaVDirac−andVDirac+illustrated in the obtained lateral graphene p–n junctions can be tuned in the range of −1 to 0 V and 0 to +1 V, respectively, by controlling the TFSI anions and surface dipoles quantitatively. The unique advantage of this approach is in adoption of polarity‐controlled molecular ion attachment on graphene, which could be further developed for various lateral electronics on 2D materials.

     
    more » « less
  7. Abstract

    2D atomic sheets of transition metal dichalcogenides (TMDs) have a tremendous potential for next‐generation optoelectronics since they can be stacked layer‐by‐layer to form van der Waals (vdW) heterostructures. This allows not only bypassing difficulties in heteroepitaxy of lattice‐mismatched semiconductors of desired functionalities but also providing a scheme to design new optoelectronics that can surpass the fundamental limitations on their conventional semiconductor counterparts. Herein, a novel 2D h‐BN/p‐MoTe2/graphene/n‐SnS2/h‐BN p–g–n junction, fabricated by a layer‐by‐layer dry transfer, demonstrates high‐sensitivity, broadband photodetection at room temperature. The combination of the MoTe2and SnS2of complementary bandgaps, and the graphene interlayer provides a unique vdW heterostructure with a vertical built‐in electric field for high‐efficiency broadband light absorption, exciton dissociation, and carrier transfer. The graphene interlayer plays a critical role in enhancing sensitivity and broadening the spectral range. An optimized device containing 5−7‐layer graphene has been achieved and shows an extraordinary responsivity exceeding 2600 A W−1with fast photoresponse and specific detectivity up to ≈1013Jones in the ultraviolet–visible–near‐infrared spectrum. This result suggests that the vdW p–g–n junctions containing multiple photoactive TMDs can provide a viable approach toward future ultrahigh‐sensitivity and broadband photonic detectors.

     
    more » « less
  8. Abstract In the carbon nanotubes film/graphene heterostructure decorated with catalytic Pt nanoparticles using atomic layer deposition (Pt-NPs/CNTs/Gr) H 2 sensors, the CNT film determines the effective sensing area and the signal transport to Gr channel. The former requires a large CNT aspect ratio for a higher sensing area while the latter demands high electric conductivity for efficient charge transport. Considering the CNT’s aspect ratio decreases, while its conductivity increases ( i.e. , bandgap decreases), with the CNT diameter, it is important to understand how quantitatively these effects impact the performance of the Pt-NPs/CNTs/Gr nanohybrids sensors. Motivated by this, this work presents a systematic study of the Pt-NPs/CNTs/Gr H 2 sensor performance with the CNT films made from different constituent CNTs of diameters ranging from 1 nm for single-wall CNTs, to 2 nm for double-wall CNTs, and to 10–30 nm for multi-wall CNTs (MWCNTs). By measuring the morphology and electric conductivity of SWCNT, DWCNT and MWCNT films, this work aims to reveal the quantitative correlation between the sensor performance and relevant CNT properties. Interestingly, the best performance is obtained on Pt-NPs/MWCNTs/Gr H 2 sensors, which can be attributed to the compromise of the effective sensing area and electric conductivity on MWCNT films and illustrates the importance of optimizing sensor design. 
    more » « less