Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a collection of distributed sensor nodes periodically exchanging information to achieve real- time situational awareness in a communication constrained setting, e.g., collaborative sensing amongst vehicles to improve safety-critical decisions. Nodes may be both con- sumers and producers of sensed information. Consumers express interest in information about particular locations, e.g., obstructed regions and/or road intersections, whilst producers broadcast updates on what they are currently able to see. Accordingly, we introduce and explore optimiz- ing trade-offs between the coverage and the space-time in- terest weighted average “age” of the information available to consumers. We consider two settings that capture the fundamental character of the problem. The first addresses selecting a subset of producers that maximizes the cover- age of the consumers preferred regions and minimizes the average age of these regions given that producers provide updates at a fixed rate. The second addresses the mini- mization of the interest weighted average age achieved by a fixed subset of producers with possibly overlapping cov- erage by optimizing their update rates. The first problem is shown to be submodular and thus amenable to greedy op- timization while the second has a non-convex/non-concave cost function which is amenable to effective optimization using the Frank-Wolfe algorithm. Numerical results exhibit the benefits of context dependent optimization information sharing among obstructed sensing nodes.more » « less
-
This paper presents a theoretical analysis for a self-driving vehicle’s velocity as it navigates through a random environment. We study a stylized environment and vehicle mobility model capturing the essential features of a self-driving vehicle’s behavior, and leverage results from stochastic geometry to characterize the distribution of a typical vehicle’s safe driving velocity, as a function of key network parameters such as the density of objects in the environment and sensing accuracy. We then consider a setting wherein the sensing accuracy is subject to a sensing/communication rate constraint. We propose a procedure that focuses the vehicle’s sensing/communication resources and estimation efforts on the objects that affect its velocity and safety the most so as to optimize its ability to drive faster in uncertain environments. Simulation results show that the proposed methodology achieves considerable gains in the vehicle’s safe driving velocity as compared to uniform rate allocation policies.more » « less
-
null (Ed.)In this paper, we analyze the performance of Multiplayer Cloud Gaming (MCG) systems. To that end, we introduce a model and new MCG-Quality of Service (QoS) metric that captures the freshness of the players’ updates and fairness in their gaming experience. We introduce an efficient measurement-based Joint Multiplayer Rate Adaptation (JMRA) algorithm that optimizes the MCG-QoS by overcoming large (possibly varying) network transport delays by increasing the associated players’ update rates. The resulting MCG- QoS is shown to be Schur-concave in the network delays, leading to natural characterizations and performance comparisons associated with the players’ spatial geometry and network congestion. In particular, joint rate adaptation enables service providers to combat variability in network delays and players’ geographic spread to achieve high service coverage. This, in turn, allows us to explore the spatial density and capacity of compute resources that need to be provisioned. Finally, we leverage tools from majorization theory, to show how service placement decisions can be made to improve the robustness of the MCG-QoS to stochastic network delays.more » « less
-
null (Ed.)Collaborative sensing of spatio-temporal events/processes is at the basis of many applications including e.g., spectrum and environmental monitoring, and self-driving cars. A system leveraging spatially distributed possibly airborn sensing nodes can in principle deliver better coverage as well as possibly redundant views of the observed processes. This paper focuses on modeling, characterising and quantifying the benefits of optimal sensor activation/scanning policies in resource constrained settings, e.g., constraints tied to energy expenditures or the scanning capabilities of nodes. Under a natural model for the process being observed we show that a periodic sensor activation policy is optimal, and characterize the relative phases of such policies via an optimization problem capturing knowledge of the sensor geometry, sensor coverage sets, and spatio-temporal intensity and event durations. Numerical and simulation results for simple different sensor geometries exhibit how performance depends on the underlying processes. We also study the gap between optimal and randomized policies and how it scales with the density of sensors and resource constraints.more » « less