skip to main content


Title: Optimizing Timely Coverage in Communication Constrained Collaborative Sensing Systems
We consider a collection of distributed sensor nodes periodically exchanging information to achieve real- time situational awareness in a communication constrained setting, e.g., collaborative sensing amongst vehicles to improve safety-critical decisions. Nodes may be both con- sumers and producers of sensed information. Consumers express interest in information about particular locations, e.g., obstructed regions and/or road intersections, whilst producers broadcast updates on what they are currently able to see. Accordingly, we introduce and explore optimiz- ing trade-offs between the coverage and the space-time in- terest weighted average “age” of the information available to consumers. We consider two settings that capture the fundamental character of the problem. The first addresses selecting a subset of producers that maximizes the cover- age of the consumers preferred regions and minimizes the average age of these regions given that producers provide updates at a fixed rate. The second addresses the mini- mization of the interest weighted average age achieved by a fixed subset of producers with possibly overlapping cov- erage by optimizing their update rates. The first problem is shown to be submodular and thus amenable to greedy op- timization while the second has a non-convex/non-concave cost function which is amenable to effective optimization using the Frank-Wolfe algorithm. Numerical results exhibit the benefits of context dependent optimization information sharing among obstructed sensing nodes.  more » « less
Award ID(s):
1809327
NSF-PAR ID:
10379452
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Control of Network Systems
ISSN:
2372-2533
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a collection of distributed sensor nodes periodically exchanging information to achieve real-time situa- tional awareness in a communication constrained setting, e.g., collaborative sensing amongst vehicles to enable safety-critical decisions. Nodes may be both consumers and producers of sensed information. Consumers express interest in information about particular locations, e.g., obstructed regions and/or road intersections, whilst producers provide updates on what they are currently able to see. Accordingly, we introduce and explore optimizing trade-offs between the coverage and the space-time average of the “age” of the information available to consumers. We consider two settings that capture the fundamental character of the problem. The first addresses selecting a subset of producers which optimizes a weighted sum of the coverage and the average age given that producers provide updates at a fixed rate. The second addresses the minimization of the weighted average age achieved by a fixed subset of producers with possibly overlapping coverage by optimizing their update rates. The former is shown to be submodular and thus amenable to greedy optimization while the latter has a non-convex/non-concave cost function which is amenable to effective optimization using tools such as the Frank- Wolfe algorithm. Numerical results exhibit the benefits of context dependent optimization information exchanges among obstructed sensing nodes in a communication constrained environment. 
    more » « less
  2. The proliferation of IoT devices, with various capabilities in sensing, monitoring, and controlling, has prompted diverse emerging applications, highly relying on effective delivery of sensitive information gathered at edge devices to remote controllers for timely responses. To effectively deliver such information/status updates, this paper undertakes a holistic study of AoI in multi-hop networks by considering the relevant and realistic factors, aiming for optimizing information freshness by rapidly shipping sensitive updates captured at a source to its destination. In particular, we consider the multi-channel with OFDM (orthogonal frequency-division multiplexing) spectrum access in multi-hop networks and develop a rigorous mathematical model to optimize AoI at destination nodes. Real-world factors, including orthogonal channel access, wireless interference, and queuing model, are taken into account for the very first time to explore their impacts on the AoI. To this end, we propose two effective algorithms where the first one approximates the optimal solution as closely as we desire while the second one has polynomial time complexity, with a guaranteed performance gap to the optimal solution. The developed model and algorithms enable in-depth studies on AoI optimization problems in OFDM-based multi-hop wireless networks. Numerical results demonstrate that our solutions enjoy better AoI performance and that AoI is affected markedly by those realistic factors taken into our consideration. 
    more » « less
  3. We consider a multicast network in which real-time status updates generated by a source are replicated and sent to multiple interested receiving nodes through independent links. The receiving nodes are divided into two groups: one priority group consists of k nodes that require the reception of every update packet, the other non-priority group consists of all other nodes without the delivery requirement. Using age of information as a freshness metric, we analyze the time-averaged age at both priority and non-priority nodes. For shifted-exponential link delay distributions, the average age at a priority node is lower than that at a non-priority node due to the delivery guarantee. However, this advantage for priority nodes disappears if the link delay is exponential distributed. Both groups of nodes have the same time-averaged age, which implies that the guaranteed delivery of updates has no effect the time-averaged freshness. 
    more » « less
  4. null (Ed.)
    Waiting at the right location at the right time can be critically important in certain variants of time-dependent shortest path problems. We investigate the computational complexity of time-dependent shortest path problems in which there is either a penalty on waiting or a limit on the total time spent waiting at a given subset of the nodes. We show that some cases are nondeterministic polynomial-time hard, and others can be solved in polynomial time, depending on the choice of the subset of nodes, on whether waiting is penalized or constrained, and on the magnitude of the penalty/waiting limit parameter. Summary of Contributions: This paper addresses simple yet relevant extensions of a fundamental problem in Operations Research: the Shortest Path Problem (SPP). It considers time-dependent variants of SPP, which can account for changing traffic and/or weather conditions. The first variant that is tackled allows for waiting at certain nodes but at a cost. The second variant instead places a limit on the total waiting. Both variants have applications in transportation, e.g., when it is possible to wait at certain locations if the benefits outweigh the costs. The paper investigates these problems using complexity analysis and algorithm design, both tools from the field of computing. Different cases are considered depending on which of the nodes contribute to the waiting cost or waiting limit (all nodes, all nodes except the origin, a subset of nodes…). The computational complexity of all cases is determined, providing complexity proofs for the variants that are NP-Hard and polynomial time algorithms for the variants that are in P. 
    more » « less
  5. This paper proposes a framework to explore the op- timization of applications where a distributed set of nodes/sensors, e.g., automated vehicles, collaboratively exchange information over a network to achieve real-time situational-awareness. To that end we propose a reasonable proxy for the usefulness of possibly delayed sensor updates and their sensitivity to the network re- sources devoted to such exchanges. This enables us to study the joint optimization of (1) the application-level update rates, i.e., how often and when sensors update other nodes, and (2), the transmission resources allocated to, and resulting delays associated with, exchanging updates. We first consider a network scenario where nodes share a single resource, e.g., an ad hoc wireless setting where a cluster of nodes, e.g., platoon of vehicles, share information by broadcasting on a single collision domain. In this setting we provide an explicit solution characterizing the interplay between network congestion and situational awareness amongst heterogeneous nodes. We then extend this to a setting where such clusters can also exchange information via a base station. In this setting we characterize the optimal solution and develop a natural distributed algorithm based on exchanging congestion prices associated with sensor nodes’ update rates and associated network transmission rates. Preliminary numerical evaluation provides initial insights on the trade-offs associated with optimizing situational awareness and the proposed algorithm’s convergence. 
    more » « less