skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1809497

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Inspired by protein polymerizations, much progress has been made in making “polymer‐like” supramolecular structures from small synthetic subunits through non‐covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in‐situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties.

     
    more » « less
  2. Abstract

    Enzymes provide optimal three-dimensional structures for substrate binding and the subsequent accelerated reaction. Such folding-dependent catalytic behaviors, however, are seldom mechanistically explored with reduced structural complexity. Here, we demonstrate that the α-helix, a much simpler structural motif of enzyme, can facilitate its own growth through the self-catalyzed polymerization ofN-carboxyanhydride (NCA) in dichloromethane. The reversible binding between the N terminus of α-helical polypeptides and NCAs promotes rate acceleration of the subsequent ring-opening reaction. A two-stage, Michaelis–Menten-type kinetic model is proposed by considering the binding and reaction between the propagating helical chains and the monomers, and is successfully utilized to predict the molecular weights and molecular-weight distributions of the resulting polymers. This work elucidates the mechanism of helix-induced, enzyme-mimetic catalysis, emphasizes the importance of solvent choice in the discovery of new reaction type, and provides a route for rapid production of well-defined synthetic polypeptides by taking advantage of self-accelerated ring-opening polymerizations.

     
    more » « less
  3. null (Ed.)
  4. Ribozymes synthesize proteins in a highly regulated local environment to minimize side reactions caused by various competing species. In contrast, it is challenging to prepare synthetic polypeptides from the polymerization of N -carboxyanhydrides (NCAs) in the presence of water and impurities, which induce monomer degradations and chain terminations, respectively. Inspired by natural protein synthesis, we herein report the preparation of well-defined polypeptides in the presence of competing species, by using a water/dichloromethane biphasic system with macroinitiators anchored at the interface. The impurities are extracted into the aqueous phase in situ, and the localized macroinitiators allow for NCA polymerization at a rate which outpaces water-induced side reactions. Our polymerization strategy streamlines the process from amino acids toward high molecular weight polypeptides with low dispersity by circumventing the tedious NCA purification and the demands for air-free conditions, enabling low-cost, large-scale production of polypeptides that has potential to change the paradigm of polypeptide-based biomaterials. 
    more » « less