skip to main content


Title: Regulating the Supramolecular Polymerization of Fibrous Crystalline Structures in Aqueous Solution
Abstract

Inspired by protein polymerizations, much progress has been made in making “polymer‐like” supramolecular structures from small synthetic subunits through non‐covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in‐situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties.

 
more » « less
Award ID(s):
1809497
NSF-PAR ID:
10360410
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
42
Issue:
8
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In an effort to augment the function of supramolecular biomaterials, recent efforts have explored the creation of hybrid materials that couple supramolecular and covalent components. Here, the benzenetricarboxamide (BTA) supramolecular polymer motif is modified to present a phenylboronic acid (PBA) in order to promote the crosslinking of 1D BTA stacks by PBA–diol dynamic‐covalent bonds through the addition of a multi‐arm diol‐bearing crosslinker. Interestingly, the combination of these two motifs serves to frustrate the resulting assembly process, yielding hydrogels with worse mechanical properties than those prepared without the multi‐arm diol crosslinker. Both systems with and without the crosslinker do, however, respond to the presence of a physiological level of glucose with a reduction in their mechanical integrity; repulsive electrostatic interactions in the BTA stacks occur in both cases upon glucose binding, with added competition from glucose with PBA–diol bonds amplifying glucose response in the hybrid material. Accordingly, the present results point to an unexpected outcome of reduced hydrogel mechanics, yet increased glucose response, when two disparate dynamic motifs of BTA supramolecular polymerization and PBA–diol crosslinking are combined, offering a vision for future preparation of glucose‐responsive supramolecular biomaterials.

     
    more » « less
  2. Abstract

    Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B−N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2and acetylene, and soft polymer networks that serve as recyclable, self‐healing, and responsive thermosets, gels and elastomeric materials.

     
    more » « less
  3. Abstract

    Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B−N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2and acetylene, and soft polymer networks that serve as recyclable, self‐healing, and responsive thermosets, gels and elastomeric materials.

     
    more » « less
  4. Abstract

    Peptides naturally have stimuli‐adaptive structural conformations that are advantageous for endowing synthetic materials with dynamic functionalities. Here, we report a carbodiimide‐based approach, combined with electrostatic modulation, to instruct π‐conjugated peptides to self‐assemble and be responsive to thermal disassembly cues upon consumption of the assembly trigger. Quaterthiophene‐functionalized peptides are utilized as a model system herein to study the formation of nanostructures at non‐equilibrium states. Peptides were designed to have aspartic acid at the termini to allow intramolecular anhydride formation upon adding carbodiimide, which consequentially reduces the electrostatic repulsion and facilitates assembly. We show that the carbodiimide‐fueled assembly and subsequent thermally assisted disassembly can be modulated by the net charge of the peptidic monomers, suggesting an assembly mechanism that can be encoded by sequence design. This carbodiimide‐based approach for the assembly of designer π‐conjugated systems offers a unique opportunity to develop bioelectronic supramolecular materials with controllable formation of dynamic and stimuli‐responsive structures.

     
    more » « less
  5. Abstract

    The ability to print soft materials into predefined architectures with programmable nanostructures and mechanical properties is a necessary requirement for creating synthetic biomaterials that mimic living tissues. However, the low viscosity of common materials and lack of required mechanical properties in the final product present an obstacle to the use of traditional additive manufacturing approaches. Here, a new liquid‐in‐liquid 3D printing approach is used to successfully fabricate constructs with internal nanostructures using in situ self‐assembly during the extrusion of an aqueous solution containing surfactant and photocurable polymer into a stabilizing polar oil bath. Subsequent photopolymerization preserves the nanostructures created due to surfactant self‐assembly at the immiscible liquid–liquid interface, which is confirmed by small‐angle X‐ray scattering. Mechanical properties of the photopolymerized prints are shown to be tunable based on constituent components of the aqueous solution. The reported 3D printing approach expands the range of low‐viscosity materials that can be used in 3D printing, and enables robust constructs production with internal nanostructures and spatially defined features. The reported approach has broad applications in regenerative medicine by providing a platform to print self‐assembling biomaterials into complex tissue mimics where internal supramolecular structures and their functionality control biological processes, similar to natural extracellular matrices.

     
    more » « less