Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding photoreaction dynamics in crystals is important for predicting the dynamic property changes accompanying these photoreactions. In this work, we investigate the photoreaction dynamics ofp‐phenylenediacrylic acid dimethyl ester (p‐PDAMe) in single crystals that show reaction front propagation, in which the photoreaction proceeds heterogeneously from the edge to the center of the crystal. Moreover, we find thatp‐PDAMesingle crystals exhibit a distinctive crystal shape change from a parallelogram to a distorted shape resembling a fluttering flag, then to a rectangle as the photoreaction proceeds. Density functional theory calculations predict the crystal structure after the photoreaction, providing a reasonable explanation of the distinctive crystal shape change that results from the spatially heterogeneous photoreaction. These results prove that the spatially heterogeneous photoreaction dynamics have the ability to induce novel crystal shape changes beyond what would be expected based on the equilibrium reactant and product crystal shapes.more » « less
-
Abstract Hollow organic molecular cocrystals comprised of 9‐methylanthracene‐1,2,4,5‐tetracyanobenzene (9MA‐TCNB) and naphthalene‐1,2,4,5‐tetracyanobenzene (NAPH‐TCNB) were fabricated using a surfactant‐mediated co‐reprecipitation method. The crystals exhibit a narrow size distribution that can be easily tuned by varying the concentration of surfactant and incubation temperature. The rectangular crystals possess symmetrical twinned cavities with an estimated storage volume on the order of 10−10 L. An aqueous dye solution can be incorporated into the cavities during crystal growth and stored inside for up to several hours, confirming the sealed nature of the hollow chambers. Our results demonstrate that it is possible to harness non‐classical crystal growth to fabricate organic molecular crystals with novel topologies.more » « less
-
Abstract The ability to exhibit life‐like oscillatory motion fueled by light represents a new capability for stimuli‐responsive materials. Although this capability has been demonstrated in soft materials like polymers, it has never been observed in molecular crystals, which are not generally regarded as dynamic objects. In this work, it is shown that molecular crystalline microwires composed of (Z)‐2‐(3‐(anthracen‐9‐yl)allylidene)malononitrile ((Z)‐DVAM) can be continuously actuated when exposed to a combination of ultraviolet and visible light. The photo‐induced motion mimics the oscillatory behavior of biological flagella and enables propagation of microwires across a surface and through liquids, with translational speeds up to 7 μm s−1. This is the first example of molecular crystals that show complex oscillatory behavior under continuous irradiation. A model that relates the rotation of the transition dipole moment between reversible E→Z photoisomerization to the microscopic torque can qualitatively reproduce how the rotational frequency depends on light intensity and polarization.more » « less
-
Abstract The molecule (E)‐(5‐(3‐anthracen‐9‐yl‐allylidene)‐2,2‐dimethyl‐[1,3] dioxane‐4,6‐dione) (E‐AYAD) undergoesE→Zphotoisomerization. In the solid state, this photoisomerization process can initiate a physical transformation of the crystal that is accompanied by a large volume expansion (ca. 10 times), loss of crystallinity, and growth of large pores. This physical change requires approximately 10 % conversion of theEisomer to theZisomer and results in a gel‐like solid with decreased stiffness that still retains its mechanical integrity. The induced porosity allows the expanding gel to engulf superparamagnetic nanoparticles from the surrounding liquid. The trapped superparamagnetic nanoparticles impart a magnetic susceptibility to the gel, allowing it to be moved by a magnetic field. The photoinduced phase transition, starting with a compact crystalline solid instead of a dilute solution, provides a new route for in situ production of functional porous materials.more » « less
-
Free, publicly-accessible full text available November 27, 2025
-
Free, publicly-accessible full text available November 20, 2025
An official website of the United States government

Full Text Available