skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 19, 2025

Title: Distinctive Photomechanical Shape Change of p ‐Phenylenediacrylic Acid Dimethyl Ester Single Crystals Induced by a Spatially Heterogeneous Photoreaction
Abstract Understanding photoreaction dynamics in crystals is important for predicting the dynamic property changes accompanying these photoreactions. In this work, we investigate the photoreaction dynamics ofp‐phenylenediacrylic acid dimethyl ester (p‐PDAMe) in single crystals that show reaction front propagation, in which the photoreaction proceeds heterogeneously from the edge to the center of the crystal. Moreover, we find thatp‐PDAMesingle crystals exhibit a distinctive crystal shape change from a parallelogram to a distorted shape resembling a fluttering flag, then to a rectangle as the photoreaction proceeds. Density functional theory calculations predict the crystal structure after the photoreaction, providing a reasonable explanation of the distinctive crystal shape change that results from the spatially heterogeneous photoreaction. These results prove that the spatially heterogeneous photoreaction dynamics have the ability to induce novel crystal shape changes beyond what would be expected based on the equilibrium reactant and product crystal shapes.  more » « less
Award ID(s):
1810514
PAR ID:
10573207
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
8
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Crystals of poly(ethylene glycol) grown in thin films of the room temperature ionic liquid (IL) 1‐ethyl‐3‐methylimidazolium ethyl sulfate were examined by electron microscopy as a first step toward exploiting nonvolatile liquids for nanoscale imaging of solvated/dissolved polymeric materials. The crystals were generated by cooling supported (over surfaces of varied polarity) and freestanding solution films to room temperature. This “open,” that is, without liquid cell, microscopy was performed on unstained, as‐grown crystals in the presence of the IL. A variety of nearly two‐dimensional crystal morphologies were observed, including rods, fibers, spherulites, compact faceted single crystals, and interconnected networks, with characteristic sizes ranging from tens of nanometers to tens of microns. Electron diffraction patterns for the rods and fibers revealed single crystal‐like long‐range order. The nature of the IL support little affected the morphology, but film thickness and cooling rate proved important. To assess the role of solvent polarity, crystals were also grown from 1‐ethyl‐3‐methylimidazolium ethyl sulfate mixed with the second IL, the less polar ethyl‐tributyl‐phosphonium diethyl phosphate; here, although the morphologies were similar to those made with pure IL, fibrillar morphologies were more prevalent. © 2020 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 478–486 
    more » « less
  2. Abstract Crystals retain an imprint of the dynamic changes within a magma reservoir and hence contain invaluable information about the evolving conditions inside volcanic plumbing systems. However, instead of telling a single, simple story, they comprise overprinted evidence of numerous processes relating to temperature, pressure and composition that drive crystal precipitation and dissolution in magmatic systems. To decipher these different elements in the story that crystals tell, we attempt to identify the observational signatures of a simple, yet ubiquitous process: crystal precipitation and dissolution during magma cooling. To isolate this process in a complex magmatic system with intricate dynamic feedbacks, we assume that synthetic crystals precipitate and dissolve rapidly in response to deviations from thermodynamic equilibrium. In our crystalline‐scale simulations, synthetic crystals drag along the cooler‐than‐ambient melt in which they precipitated and can drive a temperature‐dependent, crystal‐driven convection. We analyze the non‐dimensional conditions for this coupled convection and record the heterogeneous thermal histories that synthetic crystals in this flow regime experience. We show that many synthetic crystals dissolve, loosing their thermal record of the convection. Based on our findings, we suggest that heterogeneity in the thermal history of crystals is more indicative of local, crystal‐scale processes than the overall, system‐wide cooling trend. 
    more » « less
  3. Abstract ortho‐Phosphinophenol (oPP) is an unusual example of an air‐stable primary phosphine and a valuable precursor to a variety of useful organophosphorus compounds. The presence of PH2and OH functionalities offers the possibility of intermolecular and intramolecular P⋅⋅⋅HO hydrogen bonding (HB). The close proximity of these two groups also offers the opportunity for intramolecular PH2⋅⋅⋅HO dihydrogen bonding (DHB). This work provides experimental and computational evidence for these various types of interactions. In the solid state,oPPis associated by significant intermolecular P⋅⋅⋅HO hydrogen bonds as revealed by a single crystal X‐ray structural determination. Multinuclear NMR and IR spectroscopic studies, coupled with DFT computational studies, suggest thatoPPadopts multiple conformations in solution whose nature varies with the identity of the solvent. In the gas phase or non‐polar solvents (such as cyclohexane) an equilibrium between four conformations ofoPPis proposed. Interestingly,in silico, a conformational isomer having bifurcated intramolecular PH2⋅⋅⋅HODHB(PP4) is found to be more stable than a conformational isomer having intramolecular P⋅⋅⋅HOHB(PP1). In polar solvents (S), NMR studies indicate intermolecular OH⋅⋅⋅S HBplays a dominant role in modulating31P NMR chemical shifts over a 17 ppm range. 
    more » « less
  4. Abstract The use of transmission electron microscopy (TEM) to observe real-time structural and compositional changes has proven to be a valuable tool for understanding the dynamic behavior of nanomaterials. However, identifying the nanoparticles of interest typically require an obvious change in position, size, or structure, as compositional changes may not be noticeable during the experiment. Oxidation or reduction can often result in subtle volume changes only, so elucidating mechanisms in real-time requires atomic-scale resolution orin-situelectron energy loss spectroscopy, which may not be widely accessible. Here, by monitoring the evolution of diffraction contrast, we can observe both structural and compositional changes in iron oxide nanoparticles, specifically the oxidation from a wüstite-magnetite (FeO@Fe3O4) core–shell nanoparticle to single crystalline magnetite, Fe3O4nanoparticle. Thein-situTEM images reveal a distinctive light and dark contrast known as the ‘Ashby-Brown contrast’, which is a result of coherent strain across the core–shell interface. As the nanoparticles fully oxidize to Fe3O4, the diffraction contrast evolves and then disappears completely, which is then confirmed by modeling and simulation of TEM images. This represents a new, simplified approach to tracking the oxidation or reduction mechanisms of nanoparticles usingin-situTEM experiments. 
    more » « less
  5. Abstract Ferro‐rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo‐FR crystals (i.e., single FR domain). This study explores a cost‐effective approach to growing homo‐FR helimagnetic RbFe(SO4)2(RFSO) crystals by lowering the crystal growth temperature below theTFRthreshold using the high‐pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo‐FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally highTFRof ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates. 
    more » « less