Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category $$\mathsf V$$, as well as for small $$\mathsf V$$-categories. We show that each of these constructions extends to a shadow on an appropriate bicategory, which implies in particular that they are Morita invariant. We also define a generalized theory of Hochschild homology twisted by an automorphism and show that it is Morita invariant. Hochschild homology of Green functors and $$C_n$$-twisted topological Hochschild homology fit into this framework, which allows us to conclude that these theories are Morita invariant. We also study linearization maps relating the topological and algebraic theories, proving that the linearization map for topological Hochschild homology arises as a lax shadow functor, and constructing a new linearization map relating topological restriction homology and algebraic restriction homology. Finally, we construct a twisted Dennis trace map from the fixed points of equivariant algebraic $$K$$-theory to twisted topological Hochschild homology.more » « less
-
We describe a construction of the cyclotomic structure on topological Hochschild homology (THH) of a ring spectrum using the Hill-Hopkins-Ravenel multiplicative norm. Our analysis takes place entirely in the category of equivariant orthogonal spectra, avoiding use of the Bökstedt coherence machinery. We are also able to define two relative versions of topological cyclic homology (TC) and TR-theory: one starting with a ring C_n-spectrum and one starting with an algebra over a cyclotomic commutative ring spectrum A. We describe spectral sequences computing the relative theory over A in terms of TR over the sphere spectrum and vice versa. Furthermore, our construction permits a straightforward definition of the Adams operations on TR and TC.more » « less
An official website of the United States government

Full Text Available