skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1810975

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manifold embedding algorithms map high-dimensional data down to coordinates in a much lower-dimensional space. One of the aims of dimension reduction is to find intrinsic coordinates that describe the data manifold. The coordinates returned by the embedding algorithm are abstract, and finding their physical or domain-related meaning is not formalized and often left to domain experts. This paper studies the problem of recovering the meaning of the new low-dimensional representation in an automatic, principled fashion. We propose a method to explain embedding coordinates of a manifold as non-linear compositions of functions from a user-defined dictionary. We show that this problem can be set up as a sparse linear Group Lasso recovery problem, find sufficient recovery conditions, and demonstrate its effectiveness on data 
    more » « less
  2. M. Ranzato; A. Beygelzimer; Y. Dauphin; P.S. Liang; J. Wortman Vaughan (Ed.)
    The null space of the k-th order Laplacian Lk, known as the {\em k-th homology vector space}, encodes the non-trivial topology of a manifold or a network. Understanding the structure of the homology embedding can thus disclose geometric or topological information from the data. The study of the null space embedding of the graph Laplacian L0 has spurred new research and applications, such as spectral clustering algorithms with theoretical guarantees and estimators of the Stochastic Block Model. In this work, we investigate the geometry of the k-th homology embedding and focus on cases reminiscent of spectral clustering. Namely, we analyze the {\em connected sum} of manifolds as a perturbation to the direct sum of their homology embeddings. We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components. The proposed framework is applied to the {\em shortest homologous loop detection} problem, a problem known to be NP-hard in general. Our spectral loop detection algorithm scales better than existing methods and is effective on diverse data such as point clouds and images. 
    more » « less
  3. Many manifold embedding algorithms fail apparently when the data manifold has a large aspect ratio (such as a long, thin strip). Here, we formulate success and failure in terms of finding a smooth embedding, showing also that the problem is pervasive and more complex than previously recognized. Mathematically, success is possible under very broad conditions, provided that embedding is done by carefully selected eigenfunctions of the Laplace-Beltrami operator Δ_M. Hence, we propose a bicriterial Independent Eigencoordinate Selection (IES) algorithm that selects smooth embeddings with few eigenvectors. The algorithm is grounded in theory, has low computational overhead, and is successful on synthetic and large real data. 
    more » « less
  4. We consider a general formulation of the multiple change-point problem, in which the data is assumed to belong to a set equipped with a positive semidefinite kernel. We propose a model-selection penalty allowing to select the number of change points in Harchaoui and Cappe's kernel-based change-point detection method. The model-selection penalty generalizes non-asymptotic model-selection penalties for the change-in-mean problem with univariate data. We prove a non-asymptotic oracle inequality for the resulting kernel-based change-point detection method, whatever the unknown number of change points, thanks to a concentration result for Hilbert-space valued random variables which may be of independent interest. Experiments on synthetic and real data illustrate the proposed method, demonstrating its ability to detect subtle changes in the distribution of data. 
    more » « less
  5. We introduce the Sublevel Set (SS) method, a generic method to obtain sufficient guarantees of near-optimality and uniqueness (up to small perturbations) for a clustering. This method can be instantiated for a variety of clustering loss functions for which convex relaxations exist. Obtaining the guarantees in practice amounts to solving a convex optimization. We demonstrate the applicability of this method by obtaining distribution free guarantees for K-means clustering on realistic data sets. 
    more » « less