Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We prove that large classes of algebras in the framework of root of unity quantum cluster algebras have the structures of maximal orders in central simple algebras and Cayley–Hamilton algebras in the sense of Procesi. We show that every root of unity upper quantum cluster algebra is a maximal order and obtain an explicit formula for its reduced trace. Under mild assumptions, inside each such algebra we construct a canonical central subalgebra isomorphic to the underlying upper cluster algebra, such that the pair is a Cayley–Hamilton algebra; its fully Azumaya locus is shown to contain a copy of the underlying cluster A \mathcal {A} -variety. Both results are proved in the wider generality of intersections of mixed quantum tori over subcollections of seeds. Furthermore, we prove that all monomial subalgebras of root of unity quantum tori are Cayley–Hamilton algebras and classify those ones that are maximal orders. Arbitrary intersections of those over subsets of seeds are also proved to be Cayley–Hamilton algebras. Previous approaches to constructing maximal orders relied on filtration and homological methods. We use new methods based on cluster algebras.more » « less
-
Let F F be a finite type surface and ζ \zeta a complex root of unity. The Kauffman bracket skein algebra K ζ ( F ) K_\zeta (F) is an important object in both classical and quantum topology as it has relations to the character variety, the Teichmüller space, the Jones polynomial, and the Witten-Reshetikhin-Turaev Topological Quantum Field Theories. We compute the rank and trace of K ζ ( F ) K_\zeta (F) over its center, and we extend a theorem of the first and second authors in [Math. Z. 289 (2018), pp. 889–920] which says the skein algebra has a splitting coming from two pants decompositions of F F .more » « less
-
null (Ed.)Abstract We show that if a sequence of normalized polynomials gives rise to a positive basis of the skein algebra of a surface, then it is sandwiched between the two types of Chebyshev polynomials. For the closed torus, we show that the normalized sequence of Chebyshev polynomials of type one $$(\hat{T}_n)$$ is the only one that gives a positive basis.more » « less
An official website of the United States government
