We show how the quantum trace map of Bonahon and Wong can be constructed in a natural way using the skein algebra of Muller, which is an extension of the Kauffman bracket skein algebra of surfaces. We also show that the quantum Teichmüller space of a marked surface, defined by Chekhov–Fock (and Kashaev) in an abstract way, can be realized as a concrete subalgebra of the skew field of the skein algebra.
more »
« less
Dimension and Trace of the Kauffman Bracket Skein Algebra
Let F F be a finite type surface and ζ \zeta a complex root of unity. The Kauffman bracket skein algebra K ζ ( F ) K_\zeta (F) is an important object in both classical and quantum topology as it has relations to the character variety, the Teichmüller space, the Jones polynomial, and the Witten-Reshetikhin-Turaev Topological Quantum Field Theories. We compute the rank and trace of K ζ ( F ) K_\zeta (F) over its center, and we extend a theorem of the first and second authors in [Math. Z. 289 (2018), pp. 889–920] which says the skein algebra has a splitting coming from two pants decompositions of F F .
more »
« less
- Award ID(s):
- 1811114
- PAR ID:
- 10322656
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society, Series B
- Volume:
- 8
- Issue:
- 18
- ISSN:
- 2330-0000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We develop a theory of stated SL()‐skein modules, , of 3‐manifolds marked with intervals in their boundaries. These skein modules, generalizing stated SL(2)‐modules of the first author, stated SL(3)‐modules of Higgins', and SU(n)‐skein modules of the second author, consist of linear combinations of framed, oriented graphs, called ‐webs, with ends in , considered up to skein relations of the ‐Reshetikhin–Turaev functor on tangles, involving coupons representing the anti‐symmetrizer and its dual. We prove the Splitting Theorem asserting that cutting of a marked 3‐manifold along a disk resulting in a 3‐manifold yields a homomorphism for all . That result allows to analyze the skein modules of 3‐manifolds through the skein modules of their pieces. The theory of stated skein modules is particularly rich for thickened surfaces , in whose case, is an algebra, denoted by . One of the main results of this paper asserts that the skein algebra of the ideal bigon is isomorphic with and it provides simple geometric interpretations of the product, coproduct, counit, the antipode, and the cobraided structure on . (In particular, the coproduct is given by a splitting homomorphism.) We show that for surfaces with boundary every splitting homomorphism is injective and that is a free module with a basis induced from the Kashiwara–Lusztig canonical bases. Additionally, we show that a splitting of a thickened bigon near a marking defines a right ‐comodule structure on , or dually, a left ‐module structure. Furthermore, we show that the skein algebra of surfaces glued along two sides of a triangle is isomorphic with the braided tensor product of Majid. These results allow for geometric interpretation of further concepts in the theory of quantum groups, for example, of the braided products and of Majid's transmutation operation. Building upon the above results, we prove that the factorization homology with coefficients in the category of representations of is equivalent to the category of left modules over for surfaces with . We also establish isomorphisms of our skein algebras with the quantum moduli spaces of Alekseev–Schomerus and with the internal algebras of the skein categories for these surfaces and .more » « less
-
Entanglement entropy satisfies a first law-like relation, whichequates the first order perturbation of the entanglement entropy for theregion A A to the first order perturbation of the expectation value of the modularHamiltonian, \delta S_{A}=\delta \langle K_A \rangle δ S A = δ ⟨ K A ⟩ .We propose that this relation has a finer version which states that, thefirst order perturbation of the entanglement contour equals to the firstorder perturbation of the contour of the modular Hamiltonian,i.e. \delta s_{A}(\textbf{x})=\delta \langle k_{A}(\textbf{x})\rangle δ s A ( 𝐱 ) = δ ⟨ k A ( 𝐱 ) ⟩ .Here the contour functions s_{A}(\textbf{x}) s A ( 𝐱 ) and k_{A}(\textbf{x}) k A ( 𝐱 ) capture the contribution from the degrees of freedom at \textbf{x} 𝐱 to S_{A} S A and K_A K A respectively. In some simple cases k_{A}(\textbf{x}) k A ( 𝐱 ) is determined by the stress tensor. We also evaluate the quantumcorrection to the entanglement contour using the fine structure of theentanglement wedge and the additive linear combination (ALC) proposalfor partial entanglement entropy (PEE) respectively. The fine structurepicture shows that, the quantum correction to the boundary PEE can beidentified as a bulk PEE of certain bulk region. While the shows thatthe quantum correction to the boundary PEE comes from the linearcombination of bulk entanglement entropy. We focus on holographictheories with local modular Hamiltonian and configurations of quantumfield theories where the applies.more » « less
-
The authors proved that a Weyl module for a simple algebraic group is irreducible over every field if and only if the module is isomorphic to the adjoint representation for $$E_{8}$$ or its highest weight is minuscule. In this paper, we prove an analogous criteria for irreducibility of Weyl modules over the quantum group $$U_{\zeta}({{\mathfrak g}})$$ where $${\mathfrak g}$$ is a complex simple Lie algebra and $$\zeta$$ ranges over roots of unity.more » « less
-
null (Ed.)Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate ( C R ), transport mechanism ( i.e. , electrophoresis, electroosmosis or diffusion), and 3D conformation ( e.g. , chaotropic vs. kosmotropic effects). In this study, we explored these using 0.5–4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations ( i.e. , 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate ( R diff ) into electrophoretic ( R diff,EP ) and electroosmotic ( R diff,EO ) components provided an approach to calculate the zeta-potential of hSTf ( ζ hSTf ) with the aid of C R and zeta potential of the nanopore surface ( ζ pore ) with ( ζ pore – ζ hSTf ) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins.more » « less
An official website of the United States government

