Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our world’s complex challenges increase the need for those entering STEAM (Science, Technology, Engineering, Arts, and Math) disciplines to be able to creatively approach and collaboratively address wicked problems – complex problems with no “right” answer that span disciplines. Hackathons are environments that leverage problem-based learning practices so student teams can solve problems creatively and collaboratively by developing a solution to given challenges using engineering and computer science knowledge, skills, and abilities. The purpose of this paper is to offer a framework for interdisciplinary hackathon challenge development, as well as provide resources to aid interdisciplinary teams in better understanding the context and needs of a hackathon to evaluate and refine hackathon challenges. Three cohorts of interdisciplinary STEAM researchers were observed and interviewed as they collaboratively created a hackathon challenge incorporating all cohort-member disciplines for an online high school hackathon. The observation data and interview transcripts were analyzed using thematic analysis to distill the processes cohorts underwent and resources that were necessary for successfully creating a hackathon challenge. Through this research we found that the cohorts worked through four sequential stages as they collaborated to create a hackathon challenge. We detail the stages and offer them as a framework for future teams who seek to develop an interdisciplinary hackathon challenge. Additionally, we found that all cohorts lacked the knowledge and experience with hackathons to make fully informed decisions related to the challenge’s topic, scope, outcomes, etc. In response, this manuscript offers five hackathon quality considerations and three guiding principles for challenge developers to best meet the needs and goals of hackathon sponsors and participants.more » « less
-
Does interdisciplinary collaboration make a difference when it comes to communicating engineering concepts to community audiences? This research focuses on the effect of communication strategies on community attitudes toward engineering research. Two cohorts of four academic researchers each, representing eight different disciplinary backgrounds (aviation planning, cancer research, math education, musicology, chemical/biomolecular engineering, material science, soil science, and theater) developed research communication outputs for the public by creating: 1) an individual video presenting their research through the lens of their discipline alone; and 2) a convergent video where they collaboratively discussed their research with others in their cohort around a common theme, integrating all of their disciplinary lenses. Using a panel of respondents (n = 2,938) procured through Qualtrics, and purposefully recruited to create a diverse sample in age and racial/ethnic background, the research team randomly assigned respondents to watch one of three video treatments: one individual video, multiple individual videos, or a convergent video. Then, respondents answered a series of questions about their interest and knowledge of several STEM topics, both before and after watching the video(s). This retrospective pre/post questionnaire technique helps to alleviate response-shift bias present in self-assessed changes in learning attitudes. Our findings show that collaborative presentation videos increased self-reported audience interest in engineering, and perceptions of disciplinary relatedness more than the non-collaborative, individual presentations made by the same researchers. These results suggest a beneficial role for collaborative communication strategies to foster interest in engineering among public audiences, even among people without a background in STEM. Further, collaborative communication led to an increased sense of relatedness among different disciplines, which may be useful for effective public research communication about interdisciplinary engineering projects.more » « less
-
This Research Work-in-Progress paper explores how motivation and identity can evolve when faculty from different disciplines (arts, engineering, medicine, etc.) collaborate to present on a central theme or topic (e.g. color) across multiple community settings. Sharing research findings beyond the academic community is essential for systemic change and wide spread enhancements to our everyday lives. Through this work, we explore how faculty researchers’ motivations to share their work and their identities as researchers develop through collaborative experiences with other faculty that aim at sharing research findings with the public. In this study, faculty from divergent academic fields are working together to present convergent presentations as one coherent theme across three different informal learning sessions as well as a control setting. These presentations intend to increase public engagement with scientific research and broaden the scope of Science, Technology, Engineering, and Math (STEM) learning by approaching the themes through the faculty’s different academic backgrounds. Through collaboration and engagement with the public, we will track how faculty’s identities as researchers and motivations to share their work develop over this experience through the use of the Longitudinal Model of Motivation and Identity (LMMI). Over the course of this study, we hope to see gains in faculty motivation and researcher identities who engage with the public through this experience. For this paper, we focus on framing the overall study and provide initial findings from our recruitment survey.more » « less
An official website of the United States government

Full Text Available