skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1811156

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We show that for a closed hyperbolic 3‐manifold, the size of the first eigenvalue of the Hodge Laplacian acting on coexact 1‐forms is comparable to an isoperimetric ratio relating geodesic length and stable commutator length with comparison constants that depend polynomially on the volume and on a lower bound on injectivity radius, refining estimates of Lipnowski and Stern. We use this estimate to show that there exist sequences of closed hyperbolic 3‐manifolds with injectivity radius bounded below and volume going to infinity for which the 1‐form Laplacian has spectral gap vanishing exponentially fast in the volume. 
    more » « less
  2. Code and data to accompany the paper of the same name. 
    more » « less
  3. In this paper, we study the Riley polynomial of double twist knots with higher genus. Using the root of the Riley polynomial, we compute the range of rational slope [Formula: see text] such that [Formula: see text]-filling of the knot complement has left-orderable fundamental group. Further more, we make a conjecture about left-orderable surgery slopes of two-bridge knots. 
    more » « less
  4. Goaoc, Xavier; Kerber, Michael (Ed.)
    A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately related to that of its exterior, which is the complement of an open regular neighborhood of the knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact 3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies to links as well as knots, allows us to recover links with hundreds of crossings. We use it to find the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over 2,500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which relates to questions about slice knots and the smooth 4D Poincaré conjecture. 
    more » « less
  5. In Dunfield’s catalog of the hyperbolic manifolds in the SnapPy census which are complements of L-space knots in S, we determine that 22 have tunnel number 2 while the remaining all have tunnel number 1. Notably, these 22 manifolds contain 9 asymmetric L-space knot complements. Furthermore, using SnapPy and KLO we find presentations of these 22 knots as closures of positive braids that realize the Morton-Franks-Williams bound on braid index. The smallest of these has genus 12 and braid index 4. 
    more » « less
  6. Systematic enumeration and identification of unique 3D spatial topologies of complex engineering systems such as automotive cooling layouts, hybrid-electric power trains, and aero-engines are essential to search their exhaustive design spaces to identify spatial topologies that can satisfy challenging system requirements. However, efficient navigation through discrete 3D spatial topology options is a very challenging problem due to its combinatorial nature and can quickly exceed human cognitive abilities at even moderate complexity levels. Here we present a new, efficient, and generic design framework that utilizes mathematical spatial graph theory to represent, enumerate, and identify distinctive 3D topological classes for an abstract engineering system, given its system architecture (SA) — its components and interconnections. Spatial graph diagrams (SGDs) are generated for a given SA from zero to a specified maximum crossing number. Corresponding Yamada polynomials for all the planar SGDs are then generated. SGDs are categorized into topological classes, each of which shares a unique Yamada polynomial. Finally, for each topological class, one 3D geometric model is generated for an SGD with the fewest interconnect crossings. Several case studies are shown to illustrate the different features of our proposed framework. Design guidelines are also provided for practicing engineers to aid the utilization of this framework for application to different types of real-world problems. 
    more » « less
  7. Code and data to accompany the paper of the same name by N. M. Dunfield, S. Garoufalidis, and J. H. Rubinstein. 
    more » « less
  8. Collin, Olivier; Freidl, Stefan; Gordon, Cameron; Tillmann, Stephan; Watson, Liam (Ed.)
    This paper describes the complete list of all 205,822 exceptional Dehn fillings on the 1-cusped hyperbolic 3-manifolds that have ideal triangulations with at most 9 ideal tetrahedra. The data is consistent with the standard conjectures about Dehn filling and suggests some new ones. 
    more » « less