skip to main content


Title: Systematic Enumeration and Identification of Unique Spatial Topologies of 3D Systems Using Spatial Graph Representations
Systematic enumeration and identification of unique 3D spatial topologies of complex engineering systems such as automotive cooling layouts, hybrid-electric power trains, and aero-engines are essential to search their exhaustive design spaces to identify spatial topologies that can satisfy challenging system requirements. However, efficient navigation through discrete 3D spatial topology options is a very challenging problem due to its combinatorial nature and can quickly exceed human cognitive abilities at even moderate complexity levels. Here we present a new, efficient, and generic design framework that utilizes mathematical spatial graph theory to represent, enumerate, and identify distinctive 3D topological classes for an abstract engineering system, given its system architecture (SA) — its components and interconnections. Spatial graph diagrams (SGDs) are generated for a given SA from zero to a specified maximum crossing number. Corresponding Yamada polynomials for all the planar SGDs are then generated. SGDs are categorized into topological classes, each of which shares a unique Yamada polynomial. Finally, for each topological class, one 3D geometric model is generated for an SGD with the fewest interconnect crossings. Several case studies are shown to illustrate the different features of our proposed framework. Design guidelines are also provided for practicing engineers to aid the utilization of this framework for application to different types of real-world problems.  more » « less
Award ID(s):
1811156
NSF-PAR ID:
10319696
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
47th Design Automation Conference (DAC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Authoring behavior narratives for heterogeneous multiagent virtual humans engaged in collaborative, localized, and task‐based behaviors can be challenging. Traditional behavior authoring frameworks are eitherspace‐centric, where occupancy parameters are specified;behavior‐centric, where multiagent behaviors are defined; oragent‐centric, where desires and intentions drive agents' behavior. In this paper, we propose to integrate these approaches into a unique framework to author behavior narratives that progressively satisfy time‐varying building‐level occupancy specifications, room‐level behavior distributions, and agent‐level motivations using a prioritized resource allocation system. This approach can generate progressively more complex and plausible narratives that satisfy spatial, behavioral, and social constraints. Possible applications of this system involve computer gaming and decision‐making in engineering and architectural design.

     
    more » « less
  2. 3D Convolutional Neural Networks (3D-CNN) have been used for object recognition based on the voxelized shape of an object. However, interpreting the decision making process of these 3D-CNNs is still an infeasible task. In this paper, we present a unique 3D-CNN based Gradient-weighted Class Activation Mapping method (3D-GradCAM) for visual explanations of the distinct local geometric features of interest within an object. To enable efficient learning of 3D geometries, we augment the voxel data with surface normals of the object boundary. We then train a 3D-CNN with this augmented data and identify the local features critical for decision-making using 3D GradCAM. An application of this feature identification framework is to recognize difficult-to-manufacture drilled hole features in a complex CAD geometry. The framework can be extended to identify difficult-to-manufacture features at multiple spatial scales leading to a real-time design for manufacturability decision support system. 
    more » « less
  3. Abstract

    Tissue development and disease lead to changes in cellular organization, nuclear morphology, and gene expression, which can be jointly measured by spatial transcriptomic technologies. However, methods for jointly analyzing the different spatial data modalities in 3D are still lacking. We present a computational framework to integrate Spatial Transcriptomic data using over-parameterized graph-based Autoencoders with Chromatin Imaging data (STACI) to identify molecular and functional alterations in tissues. STACI incorporates multiple modalities in a single representation for downstream tasks, enables the prediction of spatial transcriptomic data from nuclear images in unseen tissue sections, and provides built-in batch correction of gene expression and tissue morphology through over-parameterization. We apply STACI to analyze the spatio-temporal progression of Alzheimer’s disease and identify the associated nuclear morphometric and coupled gene expression features. Collectively, we demonstrate the importance of characterizing disease progression by integrating multiple data modalities and its potential for the discovery of disease biomarkers.

     
    more » « less
  4. Given earth imagery with spectral features on a terrain surface, this paper studies surface segmentation based on both explanatory features and surface topology. The problem is important in many spatial and spatiotemporal applications such as flood extent mapping in hydrology. The problem is uniquely challenging for several reasons: first, the size of earth imagery on a terrain surface is often much larger than the input of popular deep convolutional neural networks; second, there exists topological structure dependency between pixel classes on the surface, and such dependency can follow an unknown and non-linear distribution; third, there are often limited training labels. Existing methods for earth imagery segmentation often divide the imagery into patches and consider the elevation as an additional feature channel. These methods do not fully incorporate the spatial topological structural constraint within and across surface patches and thus often show poor results, especially when training labels are limited. Existing methods on semi-supervised and unsupervised learning for earth imagery often focus on learning representation without explicitly incorporating surface topology. In contrast, we propose a novel framework that explicitly models the topological skeleton of a terrain surface with a contour tree from computational topology, which is guided by the physical constraint (e.g., water flow direction on terrains). Our framework consists of two neural networks: a convolutional neural network (CNN) to learn spatial contextual features on a 2D image grid, and a graph neural network (GNN) to learn the statistical distribution of physics-guided spatial topological dependency on the contour tree. The two models are co-trained via variational EM. Evaluations on the real-world flood mapping datasets show that the proposed models outperform baseline methods in classification accuracy, especially when training labels are limited. 
    more » « less
  5. Abstract Surrogate models have several uses in engineering design, including speeding up design optimization, noise reduction, test measurement interpolation, gradient estimation, portability, and protection of intellectual property. Traditionally, surrogate models require that all training data conform to the same parametrization (e.g., design variables), limiting design freedom and prohibiting the reuse of historical data. In response, this article proposes graph-based surrogate models (GSMs) for trusses. The GSM can accurately predict displacement fields from static loads given the structure’s geometry as input, enabling training across multiple parametrizations. GSMs build upon recent advancements in geometric deep learning, which have led to the ability to learn on undirected graphs: a natural representation for trusses. To further promote flexible surrogate models, this article explores transfer learning within the context of engineering design and demonstrates positive knowledge transfer across data sets of different topologies, complexities, loads, and applications, resulting in more flexible and data-efficient surrogate models for trusses. 
    more » « less