Consider algorithms with unbounded computation time that probe the entries of the adjacency matrix of an
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
n vertex graph, and need to output a clique. We show that if the input graph is drawn at random from(and hence is likely to have a clique of size roughly ), then for every δ <2 and constantℓ , there is anα <2 (that may depend onδ andℓ ) such that no algorithm that makesn δ probes inℓ rounds is likely (over the choice of the random graph) to output a clique of size larger than. -
Free, publicly-accessible full text available November 29, 2024
-
Abstract Tree trace reconstruction aims to learn the binary node labels of a tree, given independent samples of the tree passed through an appropriately defined deletion channel. In recent work, Davies, Rácz, and Rashtchian [10] used combinatorial methods to show that $\exp({\mathrm{O}} (k \log_{k} n))$ samples suffice to reconstruct a complete k -ary tree with n nodes with high probability. We provide an alternative proof of this result, which allows us to generalize it to a broader class of tree topologies and deletion models. In our proofs we introduce the notion of a subtrace, which enables us to connect with and generalize recent mean-based complex analytic algorithms for string trace reconstruction.more » « less
-
We consider the problem of learning latent community structure from multiple correlated networks. We study edge-correlated stochastic block models with two balanced communities, focusing on the regime where the average degree is logarithmic in the number of vertices. Our main result derives the precise information-theoretic threshold for exact community recovery using multiple correlated graphs. This threshold captures the interplay between the community recovery and graph matching tasks. In particular, we uncover and characterize a region of the parameter space where exact community recovery is possible using multiple correlated graphs, even though (1) this is information-theoretically impossible using a single graph and (2) exact graph matching is also information-theoretically impossible. In this regime, we develop a novel algorithm that carefully synthesizes algorithms from the community recovery and graph matching literatures.more » « less