skip to main content

Search for: All records

Award ID contains: 1812199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg 2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μ K arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be A ϕ = 0.949 ± 0.122 using the Bayesian pipeline, consistent with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist “bias hardening” or linear bias correction, and reducing the systematic uncertainty on A ϕ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain A ϕ along with A L , the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easilymore »infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on A ϕ and seven times lower effective lensing reconstruction noise.« less
    Free, publicly-accessible full text available December 1, 2022
  2. null (Ed.)
    ABSTRACT Separating galactic foreground emission from maps of the cosmic microwave background (CMB) and quantifying the uncertainty in the CMB maps due to errors in foreground separation are important for avoiding biases in scientific conclusions. Our ability to quantify such uncertainty is limited by our lack of a model for the statistical distribution of the foreground emission. Here, we use a deep convolutional generative adversarial network (DCGAN) to create an effective non-Gaussian statistical model for intensity of emission by interstellar dust. For training data we use a set of dust maps inferred from observations by the Planck satellite. A DCGAN is uniquely suited for such unsupervised learning tasks as it can learn to model a complex non-Gaussian distribution directly from examples. We then use these simulations to train a second neural network to estimate the underlying CMB signal from dust-contaminated maps. We discuss other potential uses for the trained DCGAN, and the generalization to polarized emission from both dust and synchrotron.