skip to main content

This content will become publicly available on December 1, 2022

Title: Optimal Cosmic Microwave Background Lensing Reconstruction and Parameter Estimation with SPTpol Data
Abstract We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg 2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μ K arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be A ϕ = 0.949 ± 0.122 using the Bayesian pipeline, consistent with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist “bias hardening” or linear bias correction, and reducing the systematic uncertainty on A ϕ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain A ϕ along with A L , the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily more » infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on A ϕ and seven times lower effective lensing reconstruction noise. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1852617 1945578
Publication Date:
NSF-PAR ID:
10323320
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r , in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use ofmore »information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5 σ , or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.« less
  2. Abstract A number of recent, low-redshift, lensing measurements hint at a universe in which the amplitude of lensing is lower than that predicted from the ΛCDM model fit to the data of the Planck CMB mission. Here we use the auto- and cross-correlation signal of unWISE galaxies and Planck CMB lensing maps to infer cosmological parameters at low redshift. In particular, we consider three unWISE samples (denoted as "blue", "green" and "red") at median redshifts z ∼ 0.6, 1.1 and 1.5, which fully cover the Dark Energy dominated era. Our cross-correlation measurements, with combined significance S / N  ∼ 80, are used tomore »infer the amplitude of low-redshift fluctuations, σ 8 ; the fraction of matter in the Universe, Ω m ; and the combination S 8  ≡ σ 8 (Ω m /0.3) 0.5 to which these low-redshift lensing measurements are most sensitive. The combination of blue, green and red samples gives a value S m  = 0.784 ± 0.015, that is fully consistent with other low-redshift lensing measurements and in 2.4σ tension with the CMB predictions from Planck. This is noteworthy, because CMB lensing probes the same physics as previous galaxy lensing measurements, but with very different systematics, thus providing an excellent complement to previous measurements.« less
  3. For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale B-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio r. It particularlymore »includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model (ΛCDM+dust+synchrotron+noise+r) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields σ(r)=0.009. The inference of r from our baseline model is tightened to r0.05=0.014+0.010−0.011 and r0.05<0.036 at 95% confidence, meaning that the BICEP/Keck B-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach σ(r)≲0.003 using data up to 2027.« less
  4. ABSTRACT The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard ΛCDM model, only about 10–20 per cent of the observed temperature depression can be accounted for via its Integrated Sachs–Wolfe imprint. However, R ≳ 100 h−1Mpc supervoids elsewhere in the sky have shown ISW imprints AISW ≈ 5.2 ± 1.6 times stronger than expected from ΛCDM (AISW = 1), which warrants further inspection. Using the Year-3more »redMaGiC catalogue of luminous red galaxies from the Dark Energy Survey, here we confirm the detection of the Eridanus supervoid as a significant underdensity in the Cold Spot’s direction at z < 0.2. We also show, with S/N ≳ 5 significance, that the Eridanus supervoid appears as the most prominent large-scale underdensity in the dark matter mass maps that we reconstructed from DES Year-3 gravitational lensing data. While we report no significant anomalies, an interesting aspect is that the amplitude of the lensing signal from the Eridanus supervoid at the Cold Spot centre is about 30 per cent lower than expected from similar peaks found in N-body simulations based on the standard ΛCDM model with parameters Ωm = 0.279 and σ8 = 0.82. Overall, our results confirm the causal relation between these individually rare structures in the cosmic web and in the CMB, motivating more detailed future surveys in the Cold Spot region.« less
  5. ABSTRACT Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between Dark Energy Spectroscopic Instrument (DESI)-like luminous red galaxies (LRGs) selected from DECam Legacy Survey imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of S/N = 27.2 over scales ℓmin = 30, ℓmax = 1000. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faintmore »limit as s = 0.999 ± 0.015, and find corresponding corrections of the order of a few per cent for $C^{\kappa g}_{\ell }, C^{gg}_{\ell }$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at zeff. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.« less