skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1812559

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Heart rhythm assessment is indispensable in diagnosis and management of many cardiac conditions and to study heart rate variability in healthy individuals. We present a proof-of-concept system for acquiring individual heart beats using smart speakers in a fully contact-free manner. Our algorithms transform the smart speaker into a short-range active sonar system and measure heart rate and inter-beat intervals (R-R intervals) for both regular and irregular rhythms. The smart speaker emits inaudible 18–22 kHz sound and receives echoes reflected from the human body that encode sub-mm displacements due to heart beats. We conducted a clinical study with both healthy participants and hospitalized cardiac patients with diverse structural and arrhythmic cardiac abnormalities including atrial fibrillation, flutter and congestive heart failure. Compared to electrocardiogram (ECG) data, our system computed R-R intervals for healthy participants with a median error of 28 ms over 12,280 heart beats and a correlation coefficient of 0.929. For hospitalized cardiac patients, the median error was 30 ms over 5639 heart beats with a correlation coefficient of 0.901. The increasing adoption of smart speakers in hospitals and homes may provide a means to realize the potential of our non-contact cardiac rhythm monitoring system for monitoring of contagious or quarantined patients, skin sensitive patients and in telemedicine settings. 
    more » « less
  2. null (Ed.)
  3. The presence of middle ear fluid is a key diagnostic marker for two of the most common pediatric ear diseases: acute otitis media and otitis media with effusion. We present an accessible solution that uses speakers and microphones within existing smartphones to detect middle ear fluid by assessing eardrum mobility. We conducted a clinical study on 98 patient ears at a pediatric surgical center. Using leave-one-out cross-validation to estimate performance on unseen data, we obtained an area under the curve (AUC) of 0.898 for the smartphone-based machine learning algorithm. In comparison, commercial acoustic reflectometry, which requires custom hardware, achieved an AUC of 0.776. Furthermore, we achieved 85% sensitivity and 82% specificity, comparable to published performance measures for tympanometry and pneumatic otoscopy. Similar results were obtained when testing across multiple smartphone platforms. Parents of pediatric patients ( n = 25 ears) demonstrated similar performance to trained clinicians when using the smartphone-based system. These results demonstrate the potential for a smartphone to be a low-barrier and effective screening tool for detecting the presence of middle ear fluid. 
    more » « less
  4. Early detection and rapid intervention can prevent death from opioid overdose. At high doses, opioids (particularly fentanyl) can cause rapid cessation of breathing (apnea), hypoxemic/hypercarbic respiratory failure, and death, the physiologic sequence by which people commonly succumb from unintentional opioid overdose. We present algorithms that run on smartphones and unobtrusively detect opioid overdose events and their precursors. Our proof-of- concept contactless system converts the phone into a short-range active sonar using frequency shifts to identify respiratory depression, apnea, and gross motor movements associated with acute opioid toxicity. We develop algorithms and perform testing in two environments: (i) an approved supervised injection facility (SIF), where people self-inject illicit opioids, and (ii) the operating room (OR), where we simulate rapid, opioid-induced overdose events using routine induction of general anesthesia. In the SIF ( n = 209), our system identified postinjection, opioid-induced central apnea with 96% sensitivity and 98% specificity and identified respiratory depression with 87% sensitivity and 89% specificity. These two key events commonly precede fatal opioid overdose. In the OR, our algorithm identified 19 of 20 simulated overdose events. Given the reliable reversibility of acute opioid toxicity, smartphone-enabled overdose detection coupled with the ability to alert naloxone-equipped friends and family or emergency medical services (EMS) could hold potential as a low-barrier, harm reduction intervention. 
    more » « less