skip to main content


This content will become publicly available on May 1, 2024

Title: Hot subdwarfs in close binaries observed from space: II. Analyses of the light variations
Context. Hot subdwarfs in close binaries with either M dwarf, brown dwarf, or white dwarf companions show unique light variations. In hot subdwarf binaries with M dwarf or brown dwarf companions, we can observe the so-called reflection effect, while in hot subdwarfs with close white dwarf companions, we find ellipsoidal modulation and/or Doppler beaming. Aims. Analyses of these light variations can be used to derive the mass and radius of the companion and determine its nature. Thereby, we can assume the most probable sdB mass and the radius of the sdB derived by the fit of the spectral energy distribution and the Gaia parallax. Methods. In the high signal-to-noise space-based light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission, several reflection effect binaries and ellipsoidal modulation binaries have been observed with much better quality than with ground-based observations. The high quality of the light curves allowed us to analyze a large sample of sdB binaries with M dwarf or white dwarf companions using LCURVE . Results. For the first time, we can constrain the absolute parameters of 19 companions of reflection effect systems, covering periods from 2.5 to 19 h and with companion masses from the hydrogen-burning limit to early M dwarfs. Moreover, we were able to determine the mass of eight white dwarf companion to hot subdwarf binaries showing ellipsoidal modulations, covering the as-yet unexplored period range of 7 to 19 h. The derived masses of the white dwarf companions show that all but two of the white dwarf companions are most likely helium-core white dwarfs. Combining our results with previously measured rotation velocities allowed us to derive the rotation period of seven sdBs in short-period binaries. In four of those systems, the rotation period of the sdB agrees with a tidally locked orbit, whereas in the other three systems, the sdB rotates significantly more slowly.  more » « less
Award ID(s):
1812874 2107982
NSF-PAR ID:
10438824
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
673
ISSN:
0004-6361
Page Range / eLocation ID:
A90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to different phenomena. Aims. Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods. By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia , and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection effect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results. The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, differs from those with white dwarf companions, implying they come from different populations. By comparing the period and minimum companion mass distributions, we find that the reflection effect systems all have M dwarf or brown dwarf companions, and that there seem to be several different populations of hot subdwarfs with white dwarf binaries – one with white dwarf minimum masses around 0.4  M ⊙ , one with longer periods and minimum companion masses up to 0.6  M ⊙ , and at the shortest period, another with white dwarf minimum masses around 0.8  M ⊙ . We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase. 
    more » « less
  2. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution. 
    more » « less
  3. Abstract

    We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with aPorb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,MsdB= 0.383 ± 0.028Mwith a massive white dwarf companion,MWD= 0.725 ± 0.026M. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESAmodel predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESAstellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92Mwith a thick helium layer of 0.17M. This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.

     
    more » « less
  4. Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 ± 0.009  M ⊙ ) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (≳2  M ⊙ ) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 ± 0.0010  M ⊙ ), radius (0.1694 ± 0.0081  R ⊙ ), and luminosity (8.2 ± 1.1  L ⊙ ). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494−7018 has burnt ∼43% (in mass) of its central helium and possesses a relatively large mixed core ( M core  = 0.198 ± 0.010  M ⊙ ), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X (O) core = 0.16 +0.13 −0.05 ) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain 12 C( α ,  γ ) 16 O nuclear reaction rate. 
    more » « less
  5. Abstract Hot subdwarf stars are mostly stripped red giants that can exhibit photometric variations due to stellar pulsations, eclipses, the reflection effect, ellipsoidal modulation, and Doppler beaming. Detailed studies of their light curves help constrain stellar parameters through asteroseismological analyses or binary light-curve modeling and generally improve our capacity to draw a statistically meaningful picture of this enigmatic stage of stellar evolution. From an analysis of Gaia DR2 flux errors, we have identified around 1200 candidate hot subdwarfs with inflated flux errors for their magnitudes—a strong indicator of photometric variability. As a pilot study, we obtained 2 minute cadence TESS Cycle 2 observations of 187 candidate hot subdwarfs with anomalous Gaia flux errors. More than 90% of our targets show significant photometric variations in their TESS light curves. Many of the new systems found are cataclysmic variables, but we report the discovery of several new variable hot subdwarfs, including HW Vir binaries, reflection-effect systems, pulsating sdBV s stars, and ellipsoidally modulated systems. We determine atmospheric parameters for select systems using follow-up spectroscopy from the 3 m Shane telescope. Finally, we present a Fourier diagnostic plot for classifying binary light curves using the relative amplitudes and phases of their fundamental and harmonic signals in their periodograms. This plot makes it possible to identify certain types of variables efficiently, without directly investigating their light curves, and may assist in the rapid classification of systems observed in large photometric surveys. 
    more » « less