skip to main content


Search for: All records

Award ID contains: 1812944

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Non-Line-Of-Sight (NLOS) imaging aims at recovering the 3D geometry of objects that are hidden from the direct line of sight. One major challenge with this technique is the weak available multibounce signal limiting scene size, capture speed, and reconstruction quality. To overcome this obstacle, we introduce a multipixel time-of-flight non-line-of-sight imaging method combining specifically designed Single Photon Avalanche Diode (SPAD) array detectors with a fast reconstruction algorithm that captures and reconstructs live low-latency videos of non-line-of-sight scenes with natural non-retroreflective objects. We develop a model of the signal-to-noise-ratio of non-line-of-sight imaging and use it to devise a method that reconstructs the scene such that signal-to-noise-ratio, motion blur, angular resolution, and depth resolution are all independent of scene depth suggesting that reconstruction of very large scenes may be possible.

     
    more » « less
  2. Abstract

    We present a method for the efficient processing of contact and collision in volumetric elastic models simulated using the Projective Dynamics paradigm. Our approach enables interactive simulation of tetrahedral meshes with more than half a million elements, provided that the model satisfies two fundamental properties: the region of the model's surface that is susceptible to collision events needs to be known in advance, and the simulation degrees of freedom associated with that surface region should be limited to a small fraction (e.g. 5%) of the total simulation nodes. In such scenarios, a partial Cholesky factorization can abstract away the behaviour of the collision‐safe subset of the face model into the Schur Complement matrix with respect to the collision‐prone region. We demonstrate how fast and accurate updates of bilateral penalty‐based collision terms can be incorporated into this representation, and solved with high efficiency on the GPU. We also demonstrate iterating a partial update of the element rotations, akin to a selective application of the local step, specifically on the smaller collision‐prone region without explicitly paying the cost associated with the rest of the simulation mesh. We demonstrate efficient and robust interactive simulation in detailed models from animation and medical applications.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    The recent “Phace” facial modeling and animation framework [Ichim et al. 2017] introduced a specific formulation of an elastic energy potential that induces mesh elements to approach certain prescribed shapes, modulo rotations. This target shape is defined for each element as an input parameter, and is a multi-dimensional analogue of activation parameters in fiber-based anisotropic muscle models. We argue that the constitutive law suggested by this energy formulation warrants consideration as a highly versatile and practical model of active elastic materials, and could rightfully be regarded as a “baseline” parametric description of active elasticity, in the same fashion that corotational elasticity has largely established itself as the prototypical rotation-invariant model of isotropic elasticity. We present a formulation of this constitutive model in the spirit and style of Finite Element Methods for continuum mechanics, complete with closed form expressions for strain tensors and exact force derivatives for use in implicit and quasistatic schemes. We demonstrate the versatility of the model through various examples in which active elements are employed. 
    more » « less