In this paper we propose a method for increasing precision and reliability of elasticity analysis in complicated burn scar cases. The need for a technique that would help physicians by objectively assessing elastic properties of scars, motivated our original algorithm. This algorithm successfully employed active contours for tracking and finite element models for strain analysis. However, the previous approach considered only one normal area and one abnormal area within the region of interest, and scar shapes which were somewhat simplified. Most burn scars have rather complicated shapes and may include multiple regions with different elastic properties. Hence, we need a method capable of adequately addressing these characteristics. The new method can split the region into more than two localities with different material properties, select and quantify abnormal areas, and apply different forces if it is necessary for a better shape description of the scar. The method also demonstrates the application of scale and mesh refinement techniques in this important domain. It is accomplished by increasing the number of Finite Element Method (FEM) areas as well as the number of elements within the area. The method is successfully applied to elastic materials and real burn scar cases. We demonstrate all of the proposed techniques and investigate the behavior of elasticity function in a 3-D space. Recovered properties of elastic materials are compared with those obtained by a conventional mechanics-based approach. Scar ratings achieved with the method are correlated against the judgments of physicians.
more »
« less
Shape Targeting: A Versatile Active Elasticity Constitutive Model
The recent “Phace” facial modeling and animation framework [Ichim et al. 2017] introduced a specific formulation of an elastic energy potential that induces mesh elements to approach certain prescribed shapes, modulo rotations. This target shape is defined for each element as an input parameter, and is a multi-dimensional analogue of activation parameters in fiber-based anisotropic muscle models. We argue that the constitutive law suggested by this energy formulation warrants consideration as a highly versatile and practical model of active elastic materials, and could rightfully be regarded as a “baseline” parametric description of active elasticity, in the same fashion that corotational elasticity has largely established itself as the prototypical rotation-invariant model of isotropic elasticity. We present a formulation of this constitutive model in the spirit and style of Finite Element Methods for continuum mechanics, complete with closed form expressions for strain tensors and exact force derivatives for use in implicit and quasistatic schemes. We demonstrate the versatility of the model through various examples in which active elements are employed.
more »
« less
- PAR ID:
- 10230451
- Date Published:
- Journal Name:
- SIGGRAPH '20: ACM SIGGRAPH 2020 Talks
- Page Range / eLocation ID:
- 59:1-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this article we formulate a stable computational nonlocal poromechanics model for dynamic analysis of saturated porous media. As a novelty, the stabilization formulation eliminates zero‐energy modes associated with the original multiphase correspondence constitutive models in the coupled nonlocal poromechanics model. The two‐phase stabilization scheme is formulated based on an energy method that incorporates inhomogeneous solid deformation and fluid flow. In this method, the nonlocal formulations of skeleton strain energy and fluid flow dissipation energy equate to their local formulations. The stable coupled nonlocal poromechanics model is solved for dynamic analysis by an implicit time integration scheme. As a new contribution, we validate the coupled stabilization formulation by comparing numerical results with analytical and finite element solutions for one‐dimensional and two‐dimensional dynamic problems in saturated porous media. Numerical examples of dynamic strain localization in saturated porous media are presented to demonstrate the efficacy of the stable coupled poromechanics framework for localized failure under dynamic loads.more » « less
-
null (Ed.)Flapping-wing insects, birds and robots are thought to offset the high power cost of oscillatory wing motion by using elastic elements for energy storage and return. Insects possess highly resilient elastic regions in their flight anatomy that may enable high dynamic efficiency. However, recent experiments highlight losses due to damping in the insect thorax that could reduce the benefit of those elastic elements. We performed experiments on, and simulations of, a dynamically scaled robophysical flapping model with an elastic element and biologically relevant structural damping to elucidate the roles of body mechanics, aerodynamics and actuation in spring-wing energetics. We measured oscillatory flapping-wing dynamics and energetics subject to a range of actuation parameters, system inertia and spring elasticity. To generalize these results, we derive the non-dimensional spring-wing equation of motion and present variables that describe the resonance properties of flapping systems: N , a measure of the relative influence of inertia and aerodynamics, and K ^ , the reduced stiffness. We show that internal damping scales with N , revealing that dynamic efficiency monotonically decreases with increasing N . Based on these results, we introduce a general framework for understanding the roles of internal damping, aerodynamic and inertial forces, and elastic structures within all spring-wing systems.more » « less
-
A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) distribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deformations and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model and more robust numerically, we posed the following question: How accurately could we map the shear modulus distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We observed that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar trend was observed for simulated experiments, where synthetically computed displacement data were produced and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background increases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this work could be of importance to characterize mechanical property variations of polymer based materials such as rubbers or in elasticity imaging of tissues for pathology.more » « less
-
Abstract This study proposes a simple and novel class of stretch-limiting constitutive relations for perfectly flexible elastic strings drawn from modern advances in constitutive theory for elastic bodies. We investigate strings governed by constitutive relations where stretch is a bounded, piecewise linear function of tension, extending beyond the traditional Cauchy elasticity framework. Our analysis includes explicit solutions for catenaries and longitudinal, piecewise constant stretched motions.more » « less
An official website of the United States government

