Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Colonies of the arboreal turtle ant create networks of trails that link nests and food sources on the graph formed by branches and vines in the canopy of the tropical forest. Ants put down a volatile pheromone on the edges as they traverse them. At each vertex, the next edge to traverse is chosen using a decision rule based on the current pheromone level. There is a bidirectional flow of ants around the network. In a previous field study, it was observed that the trail networks approximately minimize the number of vertices, thus solving a variant of the popular shortest path problem without any central control and with minimal computational resources. We propose a biologically plausible model, based on a variant of the reinforced random walk on a graph, which explains this observation and suggests surprising algorithms for the shortest path problem and its variants. Through simulations and analysis, we show that when the rate of flow of ants does not change, the dynamics converges to the path with the minimum number of vertices, as observed in the field. The dynamics converges to the shortest path when the rate of flow increases with time, so the colony can solve the shortest path problem merely by increasing the flow rate. We also show that to guarantee convergence to the shortest path, bidirectional flow and a decision rule dividing the flow in proportion to the pheromone level are necessary, but convergence to approximately short paths is possible with other decision rules.more » « less
-
We show that any memory-constrained, first-order algorithm which minimizes d-dimensional, 1-Lipschitz convex functions over the unit ball to 1/ poly(d) accuracy using at most d^(1.25-delta) bits of memory must make at least d^(1+ 4 delta / 3) first-order queries (for any constant delta in (0,1/4). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal O(d polylog d) query bound for this problem obtained by cutting plane methods that use >d^2 memory. This resolves one of the open problems in the COLT 2019 open problem publication of Woodworth and Srebro.more » « less
-
We provide new gradient-based methods for efficiently solving a broad class of ill-conditioned optimization problems. We consider the problem of minimizing a function f : R d --> R which is implicitly decomposable as the sum of m unknown non-interacting smooth, strongly convex functions and provide a method which solves this problem with a number of gradient evaluations that scales (up to logarithmic factors) as the product of the square-root of the condition numbers of the components. This complexity bound (which we prove is nearly optimal) can improve almost exponentially on that of accelerated gradient methods, which grow as the square root of the condition number of f. Additionally, we provide efficient methods for solving stochastic, quadratic variants of this multiscale optimization problem. Rather than learn the decomposition of f (which would be prohibitively expensive), our methods apply a clean recursive “Big-Step-Little-Step” interleaving of standard methods. The resulting algorithms use O˜(dm) space, are numerically stable, and open the door to a more fine-grained understanding of the complexity of convex optimization beyond condition number.more » « less
-
null (Ed.)Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time-resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time-specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway-specific readouts.more » « less
-
null (Ed.)We introduce a framework for statistical estimation that leverages knowledge of how samples are collected but makes no distributional assumptions on the data values. Specifically, we consider a population of elements [n]={1,...,n} with corresponding data values x1,...,xn. We observe the values for a "sample" set A \subset [n] and wish to estimate some statistic of the values for a "target" set B \subset [n] where B could be the entire set. Crucially, we assume that the sets A and B are drawn according to some known distribution P over pairs of subsets of [n]. A given estimation algorithm is evaluated based on its "worst-case, expected error" where the expectation is with respect to the distribution P from which the sample A and target sets B are drawn, and the worst-case is with respect to the data values x1,...,xn. Within this framework, we give an efficient algorithm for estimating the target mean that returns a weighted combination of the sample values–-where the weights are functions of the distribution P and the sample and target sets A, B--and show that the worst-case expected error achieved by this algorithm is at most a multiplicative pi/2 factor worse than the optimal of such algorithms. The algorithm and proof leverage a surprising connection to the Grothendieck problem. We also extend these results to the linear regression setting where each datapoint is not a scalar but a labeled vector (xi,yi). This framework, which makes no distributional assumptions on the data values but rather relies on knowledge of the data collection process via the distribution P, is a significant departure from the typical statistical estimation framework and introduces a uniform analysis for the many natural settings where membership in a sample may be correlated with data values, such as when individuals are recruited into a sample through their social networks as in "snowball/chain" sampling or when samples have chronological structure as in "selective prediction".more » « less