Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Colonies of the arboreal turtle ant create networks of trails that link nests and food sources on the graph formed by branches and vines in the canopy of the tropical forest. Ants put down a volatile pheromone on the edges as they traverse them. At each vertex, the next edge to traverse is chosen using a decision rule based on the current pheromone level. There is a bidirectional flow of ants around the network. In a previous field study, it was observed that the trail networks approximately minimize the number of vertices, thus solving a variant of the popular shortest path problem without any central control and with minimal computational resources. We propose a biologically plausible model, based on a variant of the reinforced random walk on a graph, which explains this observation and suggests surprising algorithms for the shortest path problem and its variants. Through simulations and analysis, we show that when the rate of flow of ants does not change, the dynamics converges to the path with the minimum number of vertices, as observed in the field. The dynamics converges to the shortest path when the rate of flow increases with time, so the colony can solve the shortest path problem merely by increasing the flow rate. We also show that to guarantee convergence to the shortest path, bidirectional flow and a decision rule dividing the flow in proportion to the pheromone level are necessary, but convergence to approximately short paths is possible with other decision rules.more » « less
-
We show that any memory-constrained, first-order algorithm which minimizes d-dimensional, 1-Lipschitz convex functions over the unit ball to 1/ poly(d) accuracy using at most d^(1.25-delta) bits of memory must make at least d^(1+ 4 delta / 3) first-order queries (for any constant delta in (0,1/4). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal O(d polylog d) query bound for this problem obtained by cutting plane methods that use >d^2 memory. This resolves one of the open problems in the COLT 2019 open problem publication of Woodworth and Srebro.more » « less
-
We provide new gradient-based methods for efficiently solving a broad class of ill-conditioned optimization problems. We consider the problem of minimizing a function f : R d --> R which is implicitly decomposable as the sum of m unknown non-interacting smooth, strongly convex functions and provide a method which solves this problem with a number of gradient evaluations that scales (up to logarithmic factors) as the product of the square-root of the condition numbers of the components. This complexity bound (which we prove is nearly optimal) can improve almost exponentially on that of accelerated gradient methods, which grow as the square root of the condition number of f. Additionally, we provide efficient methods for solving stochastic, quadratic variants of this multiscale optimization problem. Rather than learn the decomposition of f (which would be prohibitively expensive), our methods apply a clean recursive “Big-Step-Little-Step” interleaving of standard methods. The resulting algorithms use O˜(dm) space, are numerically stable, and open the door to a more fine-grained understanding of the complexity of convex optimization beyond condition number.more » « less
-
null (Ed.)Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time-resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time-specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway-specific readouts.more » « less
-
null (Ed.)Self-training is a standard approach to semi-supervised learning where the learner's own predictions on unlabeled data are used as supervision during training. In this paper, we reinterpret this label assignment process as an optimal transportation problem between examples and classes, wherein the cost of assigning an example to a class is mediated by the current predictions of the classifier. This formulation facilitates a practical annealing strategy for label assignment and allows for the inclusion of prior knowledge on class proportions via flexible upper bound constraints. The solutions to these assignment problems can be efficiently approximated using Sinkhorn iteration, thus enabling their use in the inner loop of standard stochastic optimization algorithms. We demonstrate the effectiveness of our algorithm on the CIFAR-10, CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art self-training algorithm. Our code is publicly available from github.more » « less
An official website of the United States government

Full Text Available