skip to main content

Search for: All records

Award ID contains: 1813351

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this note we establish hypocoercivity and exponential relaxation to the Maxwellian for a class of kinetic Fokker-Planck-Alignment equations arising in the studies of collective behavior. Unlike previously known results in this direction that focus on convergence near Maxwellian, our result is global for hydrodynamically dense flocks, which has several consequences. In particular, if communication is long-range, the convergence is unconditional. If communication is local then all nearly aligned flocks quantified by smallness of the Fisher information relax to the Maxwellian. In the latter case the class of initial data is stable under the vanishing noise limit, i.e. it reduces to a non-trivial and natural class of traveling wave solutions to the noiseless Vlasov-Alignment equation.

    The main novelty in our approach is the adaptation of a mollified Favre filtration of the macroscopic momentum into the communication protocol. Such filtration has been used previously in large eddy simulations of compressible turbulence and its new variant appeared in the proof of the Onsager conjecture for inhomogeneous Navier-Stokes system. A rigorous treatment of well-posedness for smooth solutions is provided. Lastly, we prove that in the limit of strong noise and local alignment solutions to the Fokker-Planck-Alignment equation Maxwellialize to solutions of the macroscopic hydrodynamic system with the isothermal pressure.

    more » « less
  2. This paper introduces a new method for establishing alignment in systems of collective behavior with degenerate communication protocol. The communication protocol consists of a kernel defining interaction between pairs of agents. Degeneracy presumes that the kernel vanishes in a region, which creates a zone of indifference. A motivating example is the case of a local kernel. Lapses in communication create a lack of coercivity in the energy estimates. Our approach is the construction of a corrector functional that compensates for this lack of coercivity. We obtain a series of new results: unconditional alignment for systems on [Formula: see text] with degeneracy at close range and fat tail in the long range, and for systems on the circle with purely local kernels. The results are proved in the context of both the agent based model and its hydrodynamic counterpart (Euler alignment model). The method covers bounded and singular communication kernels. 
    more » « less
  3. In this note we study a new class of alignment models with self-propulsion and Rayleigh-type friction forces, which describes the collective behavior of agents with individual characteristic parameters. We describe the long time dynamics via a new method which allows us to reduce analysis from the multidimensional system to a simpler family of two-dimensional systems parametrized by a proper Grassmannian. With this method we demonstrate exponential alignment for a large (and sharp) class of initial velocity configurations confined to a sector of opening less than \begin{document}$ \pi $\end{document}.

    In the case when characteristic parameters remain frozen, the system governs dynamics of opinions for a set of players with constant convictions. Viewed as a dynamical non-cooperative game, the system is shown to possess a unique stable Nash equilibrium, which represents a settlement of opinions most agreeable to all agents. Such an agreement is furthermore shown to be a global attractor for any set of initial opinions.

    more » « less