skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global hypocoercivity of kinetic Fokker-Planck-Alignment equations
In this note we establish hypocoercivity and exponential relaxation to the Maxwellian for a class of kinetic Fokker-Planck-Alignment equations arising in the studies of collective behavior. Unlike previously known results in this direction that focus on convergence near Maxwellian, our result is global for hydrodynamically dense flocks, which has several consequences. In particular, if communication is long-range, the convergence is unconditional. If communication is local then all nearly aligned flocks quantified by smallness of the Fisher information relax to the Maxwellian. In the latter case the class of initial data is stable under the vanishing noise limit, i.e. it reduces to a non-trivial and natural class of traveling wave solutions to the noiseless Vlasov-Alignment equation.The main novelty in our approach is the adaptation of a mollified Favre filtration of the macroscopic momentum into the communication protocol. Such filtration has been used previously in large eddy simulations of compressible turbulence and its new variant appeared in the proof of the Onsager conjecture for inhomogeneous Navier-Stokes system. A rigorous treatment of well-posedness for smooth solutions is provided. Lastly, we prove that in the limit of strong noise and local alignment solutions to the Fokker-Planck-Alignment equation Maxwellialize to solutions of the macroscopic hydrodynamic system with the isothermal pressure.  more » « less
Award ID(s):
2107956 1813351
PAR ID:
10329347
Author(s) / Creator(s):
Date Published:
Journal Name:
Kinetic and Related Models
Volume:
15
Issue:
2
ISSN:
1937-5093
Page Range / eLocation ID:
213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions. 
    more » « less
  2. Many classical examples of models of self-organized dynamics, including the Cucker–Smale, Motsch–Tadmor, multi-species, and several others, include an alignment force that is based upon density-weighted averaging protocol. Those protocols can be viewed as special cases of “environmental averaging”. In this paper we formalize this concept and introduce a unified framework for systematic analysis of alignment models.A series of studies are presented including the mean-field limit in deterministic and stochastic settings, hydrodynamic limits in the monokinetic and Maxwellian regimes, hypocoercivity and global relaxation for dissipative kinetic models, several general alignment results based on chain connectivity and spectral gap analysis. These studies cover many of the known results and reveal new ones, which include asymptotic alignment criteria based on connectivity conditions, new estimates on the spectral gap of the alignment force that do not rely on the upper bound of the macroscopic density, uniform gain of positivity for solutions of the Fokker–Planck-alignment model based on smooth environmental averaging. As a consequence, we establish unconditional relaxation result for global solutions to the Fokker–Planck-alignment model, which presents a substantial improvement over previously known perturbative results. 
    more » « less
  3. We propose an equilibrium-driven deformation algorithm (EDDA) to simulate the inbetweening transformations starting from an initial image to an equilibrium image, which covers images varying from a greyscale type to a colorful type on planes or manifolds. The algorithm is based on the Fokker-Planck dynamics on manifold, which automatically incorporates the manifold structure suggested by dataset and satisfies positivity, unconditional stability, mass conservation law and exponentially convergence. The thresholding scheme is adapted for the sharp interface dynamics and is used to achieve the finite time convergence. Using EDDA, three challenging examples, (I) facial aging process, (II) coronavirus disease 2019 (COVID-19) pneumonia invading/fading process, and (III) continental evolution process are computed efficiently. 
    more » « less
  4. We consider a linear Fermi-Pasta-Ulam-Tsingou lattice with random spatially varying material coefficients. Using the methods of stochastic homogenization we show that solutions with long wave initial data converge in an appropriate sense to solutions of a wave equation. The convergence is strong and both almost sure and in expectation, but the rate is quite slow. The technique combines energy estimates with powerful classical results about random walks, specifically the law of the iterated logarithm. 
    more » « less
  5. In this paper, we study fermion ground states of the relativistic Vlasov-Poisson system arising in the semiclassical limit from relativistic quantum theory of white dwarfs. We show that fermion ground states of the three dimensional relativistic Vlasov-Poisson system exist for subcritical mass, the mass density of such fermion ground states satisfies the Chandrasekhar equation for white dwarfs, and that they are orbitally stable as long as solutions exist. 
    more » « less