skip to main content

Search for: All records

Award ID contains: 1813649

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The surfaces of neutron stars are sources of strongly polarized soft X-rays due to the presence of strong magnetic fields. Radiative transfer mediated by electron scattering and free–free absorption is central to defining local surface anisotropy and polarization signatures. Scattering transport is strongly influenced by the complicated interplay between linear and circular polarizations. This complexity has been captured in a sophisticated magnetic Thomson scattering simulation we recently developed to model the outer layers of fully ionized atmospheres in such compact objects, heretofore focusing on case studies of localized surface regions. Yet, the interpretation of observed intensity pulse profiles and their efficacy in constraining key neutron star geometry parameters is critically dependent upon adding up emission from extended surface regions. In this paper, intensity, anisotropy, and polarization characteristics from such extended atmospheres, spanning considerable ranges of magnetic colatitudes, are determined using our transport simulation. These constitute a convolution of varied properties of Stokes parameter information at disparate surface locales with different magnetic field strengths and directions relative to the local zenith. Our analysis includes full general relativistic propagation of light from the surface to an observer at infinity. The array of pulse profiles for intensity and polarization presented highlights howmore »powerful probes of stellar geometry are possible. Significant phase-resolved polarization degrees in the range of 10%–60% are realized when summing over a variety of surface field directions. These results provide an important background for observations to be acquired by NASA’s new Imaging X-ray Polarimetry Explorer X-ray polarimetry mission.

    « less
  2. Abstract Magnetars, isolated neutron stars with magnetic-field strengths typically ≳10 14 G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day −1 , constraining the density of the driving region to ρ ∼ 10 10 g cm −3 , at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, thatmore »untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.« less
  3. Abstract We report on NICER X-ray monitoring of the magnetar SGR 1830−0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: ν = 0.096008680(2) Hz, ν ̇ = − 6.2 ( 1 ) × 10 − 14 Hz s −1 , and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8–7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed.more »We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum—the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission.« less
  4. ABSTRACT The study of polarized radiation transfer in the highly magnetized surface locales of neutron stars is of great interest to the understanding of accreting X-ray pulsars, rotation-powered pulsars, and magnetars. This paper explores scattering transport in the classical magnetic Thomson domain that is of broad applicability to these neutron star classes. The development of a Monte Carlo simulation for the polarized radiative transfer is detailed: it employs an electric field vector formalism to enable a breadth of utility in relating linear, circular, and elliptical polarizations. The simulation can be applied to any neutron star surface locale, and is adaptable to accretion column and magnetospheric problems. Validation of the code for both intensity and Stokes parameter determination is illustrated in a variety of ways. Representative results for emergent polarization signals from surface layers are presented for both polar and equatorial magnetic locales, exhibiting contrasting signatures between the two regions. There is also a strong dependence of these characteristics on the ratio of the frequency $\, \omega \,$ of a photon to the cyclotron frequency $\, \omega _{\mathrm{B}}=eB/mc\,$. Polarization signatures for high-opacity domains are presented, highlighting compact analytical approximations for the Stokes parameters and anisotropy relative to the local field directionmore »for an extended range of frequencies. These are very useful in defining injection conditions deep in the simulation slab geometries, expediting the generation of emission signals from highly opaque stellar atmospheres. The results are interpreted throughout using the polarization characteristics of the magnetic Thomson differential cross-section.« less