skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Title: Pulse Peak Migration during the Outburst Decay of the Magnetar SGR 1830-0645: Crustal Motion and Magnetospheric Untwisting
Abstract Magnetars, isolated neutron stars with magnetic-field strengths typically ≳10 14 G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day −1 , constraining the density of the driving region to ρ ∼ 10 10 g cm −3 , at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.  more » « less
Award ID(s):
1813649
NSF-PAR ID:
10334870
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
924
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on NICER X-ray monitoring of the magnetar SGR 1830−0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: ν = 0.096008680(2) Hz, ν ̇ = − 6.2 ( 1 ) × 10 − 14 Hz s −1 , and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8–7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed. We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum—the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission. 
    more » « less
  2. Aims. The modelling of spectroscopic observations of tidal disruption events (TDEs) to date suggests that the newly formed accretion disks are mostly quasi-circular. In this work we study the transient event AT 2020zso, hosted by an active galactic nucleus (AGN; as inferred from narrow emission line diagnostics), with the aim of characterising the properties of its newly formed accretion flow. Methods. We classify AT 2020zso as a TDE based on the blackbody evolution inferred from UV/optical photometric observations and spectral line content and evolution. We identify transient, double-peaked Bowen (N  III ), He  I , He  II, and H α emission lines. We model medium-resolution optical spectroscopy of the He  II (after careful de-blending of the N  III contribution) and H α lines during the rise, peak, and early decline of the light curve using relativistic, elliptical accretion disk models. Results. We find that the spectral evolution before the peak can be explained by optical depth effects consistent with an outflowing, optically thick Eddington envelope. Around the peak, the envelope reaches its maximum extent (approximately 10 15 cm, or ∼3000–6000 gravitational radii for an inferred black hole mass of 5−10 × 10 5 M ⊙ ) and becomes optically thin. The H α and He  II emission lines at and after the peak can be reproduced with a highly inclined ( i  = 85 ± 5 degrees), highly elliptical ( e  = 0.97 ± 0.01), and relatively compact ( R in = several 100 R g and R out = several 1000 R g ) accretion disk. Conclusions. Overall, the line profiles suggest a highly elliptical geometry for the new accretion flow, consistent with theoretical expectations of newly formed TDE disks. We quantitatively confirm, for the first time, the high inclination nature of a Bowen (and X-ray dim) TDE, consistent with the unification picture of TDEs, where the inclination largely determines the observational appearance. Rapid line profile variations rule out the binary supermassive black hole hypothesis as the origin of the eccentricity; these results thus provide a direct link between a TDE in an AGN and the eccentric accretion disk. We illustrate for the first time how optical spectroscopy can be used to constrain the black hole spin, through (the lack of) disk precession signatures (changes in inferred inclination). We constrain the disk alignment timescale to > 15 days in AT2020zso, which rules out high black hole spin values ( a  < 0.8) for M BH  ∼ 10 6 M ⊙ and disk viscosity α  ≳ 0.1. 
    more » « less
  3. ABSTRACT

    AT 2022cmc is a luminous optical transient (νLν ≳ 1045 erg s−1) accompanied by decaying non-thermal X-rays (peak duration tX ≲ days and isotropic energy EX,iso ≳ 1053 erg) and a long-lived radio/mm synchrotron afterglow, which has been interpreted as a jetted tidal disruption event (TDE). Both an equipartition analysis and a detailed afterglow model reveal the radio/mm emitting plasma to be expanding mildly relativistically (Lorentz factor $\Gamma \gtrsim \, \mathrm{ few}$ ) with an opening angle θj ≃ 0.1 and roughly fixed energy Ej,iso ≳ few × 1053 erg into an external medium of density profile n ∝ R−k with k ≃ 1.5–2, broadly similar to that of the first jetted TDE candidate Swift J1644+57 and consistent with Bondi accretion at a rate of ∼$10^{-3}\,\dot{M}_{\rm Edd}$ on to a 106 M⊙ black hole before the outburst. The rapidly decaying optical emission over the first days is consistent with fast-cooling synchrotron radiation from the same forward shock as the radio/mm emission, while the bluer slowly decaying phase to follow likely represents a separate thermal emission component. Emission from the reverse shock may have peaked during the first days, but its non-detection in the optical band places an upper bound Γj ≲ 100 on the Lorentz factor of the unshocked jet. Although a TDE origin for AT 2022cmc is indeed supported by some observations, the vast difference between the short-lived jet activity phase tX ≲ days and the months-long thermal optical emission also challenges this scenario. A stellar core-collapse event giving birth to a magnetar or black hole engine of peak duration ∼1 d offers an alternative model also consistent with the circumburst environment, if interpreted as a massive star wind.

     
    more » « less
  4. We present photometric and spectroscopic data on three extragalactic luminous red novae (LRNe): AT 2018bwo , AT 2021afy , and AT 2021blu . AT 2018bwo was discovered in NGC 45 (at about 6.8 Mpc) a few weeks after the outburst onset. During the monitoring period, the transient reached a peak luminosity of 10 40 erg s −1 . AT 2021afy , hosted by UGC 10043 (∼49.2 Mpc), showed a double-peaked light curve, with the two peaks reaching a similar luminosity of 2.1(±0.6)×10 41 erg s −1 . Finally, for AT 2021blu in UGC 5829 (∼8.6 Mpc), the pre-outburst phase was well-monitored by several photometric surveys, and the object showed a slow luminosity rise before the outburst. The light curve of AT 2021blu was sampled with an unprecedented cadence until the object disappeared behind the Sun, and it was then recovered at late phases. The light curve of LRN AT 2021blu shows a double peak, with a prominent early maximum reaching a luminosity of 6.5 × 10 40 erg s −1 , which is half of that of AT 2021afy . The spectra of AT 2021afy and AT 2021blu display the expected evolution for LRNe: a blue continuum dominated by prominent Balmer lines in emission during the first peak, and a redder continuum consistent with that of a K-type star with narrow absorption metal lines during the second, broad maximum. The spectra of AT 2018bwo are markedly different, with a very red continuum dominated by broad molecular features in absorption. As these spectra closely resemble those of LRNe after the second peak, AT 2018bwo was probably discovered at the very late evolutionary stages. This would explain its fast evolution and the spectral properties compatible with that of an M-type star. From the analysis of deep frames of the LRN sites years before the outburst, and considerations of the light curves, the quiescent progenitor systems of the three LRNe were likely massive, with primaries ranging from about 13 M ⊙ for AT 2018bwo , to 14 −1 +4 M ⊙ for AT 2021blu , and over 40 M ⊙ for AT 2021afy . 
    more » « less
  5. null (Ed.)
    ABSTRACT We present the photometric and spectroscopic evolution of supernova (SN) 2019cad during the first ∼100 d from explosion. Based on the light-curve morphology, we find that SN 2019cad resembles the double-peaked Type Ib/c SN 2005bf and the Type Ic PTF11mnb. Unlike those two objects, SN 2019cad also shows the initial peak in the redder bands. Inspection of the g-band light curve indicates the initial peak is reached in ∼8 d, while the r-band peak occurred ∼15 d post-explosion. A second and more prominent peak is reached in all bands at ∼45 d past explosion, followed by a fast decline from ∼60 d. During the first 30 d, the spectra of SN 2019cad show the typical features of a Type Ic SN, however, after 40 d, a blue continuum with prominent lines of Si ii λ6355 and C ii λ6580 is observed again. Comparing the bolometric light curve to hydrodynamical models, we find that SN 2019cad is consistent with a pre-SN mass of 11 M⊙, and an explosion energy of 3.5 × 1051 erg. The light-curve morphology can be reproduced either by a double-peaked 56Ni distribution with an external component of 0.041 M⊙, and an internal component of 0.3 M⊙ or a double-peaked 56Ni distribution plus magnetar model (P ∼ 11 ms and B ∼ 26 × 1014 G). If SN 2019cad were to suffer from significant host reddening (which cannot be ruled out), the 56Ni model would require extreme values, while the magnetar model would still be feasible. 
    more » « less