skip to main content

Search for: All records

Award ID contains: 1814679

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Performance/security trade-off is widely noticed in CFI research, however, we observe that not every CFI scheme is subject to the trade-off. Motivated by the key observation, we ask three questions: ➊ does trade-off really exist in different CFI schemes? ➋ if trade-off do exist, how do previous works comply with it? ➌ how can it inspire future research? Although the three questions probably cannot be directly answered, they are inspiring. We find that a deeper understanding of the nature of the trade-off will help answer the three questions. Accordingly, we proposed theGPTconjecture to pinpoint the trade-off in designing CFI schemes, which says that at most two out of three properties (fine granularity, acceptable performance, and preventive protection) could be achieved.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Growing multi-stage attacks in computer networks impose significant security risks and necessitate the development of effective defense schemes that are able to autonomously respond to intrusions during vulnerability windows. However, the defender faces several real-world challenges, e.g., unknown likelihoods and unknown impacts of successful exploits. In this article, we leverage reinforcement learning to develop an innovative adaptive cyber defense to maximize the cost-effectiveness subject to the aforementioned challenges. In particular, we use Bayesian attack graphs to model the interactions between the attacker and networks. Then we formulate the defense problem of interest as a partially observable Markov decision process problem where the defender maintains belief states to estimate system states, leverages Thompson sampling to estimate transition probabilities, and utilizes reinforcement learning to choose optimal defense actions using measured utility values. The algorithm performance is verified via numerical simulations based on real-world attacks. 
    more » « less
  5. null (Ed.)