A<sc>bstract</sc> Strongly-interacting dark matter can be accumulated in large quantities inside the Earth, and for dark matter particles in a few GeV mass range, it can exist in large quantities near the Earth’s surface. We investigate the constraints imposed on such dark matter properties by its upscattering by fast neutrons in nuclear reactors with subsequent scattering in nearby well-shielded dark matter detectors, schemes which are already used for searches of the coherent reactor neutrino scattering. We find that the existing experiments cover new parameter space on the spin-dependent interaction between dark matter and the nucleon. Similar experiments performed with research reactors, and lesser amount of shielding, may provide additional sensitivity to strongly-interacting dark matter.
more »
« less
Position paper: GPT conjecture: understanding the trade-offs between granularity, performance and timeliness in control-flow integrity
Abstract Performance/security trade-off is widely noticed in CFI research, however, we observe that not every CFI scheme is subject to the trade-off. Motivated by the key observation, we ask three questions: ➊ does trade-off really exist in different CFI schemes? ➋ if trade-off do exist, how do previous works comply with it? ➌ how can it inspire future research? Although the three questions probably cannot be directly answered, they are inspiring. We find that a deeper understanding of the nature of the trade-off will help answer the three questions. Accordingly, we proposed theGPTconjecture to pinpoint the trade-off in designing CFI schemes, which says that at most two out of three properties (fine granularity, acceptable performance, and preventive protection) could be achieved.
more »
« less
- PAR ID:
- 10307270
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Cybersecurity
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2523-3246
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Risks in globally interconnected socio-environmental systems are complex: trade, migration, climate phenomena such as El Niño, and other processes can both redistribute and modulate risks. Here we argue that risk must be investigated not only as a product of these systems but also as a force that rewires them through, for example, supply diversification, trade policy, insurance and other contracting, or cooperation. Two key questions arise: how do individuals and institutions perceive risks in these global, complex systems, and how do attempts to govern risks change how the systems function? We identify several areas for interdisciplinary research to address these questions.more » « less
-
In this paper, we define a window code to be the portion of a Spatially-coupled low-density parity check (SC-LDPC) code seen by a single iteration of a windowed decoder. We consider the design of SC-LDPC codes for windowed decoding via optimization of the window code. In particular, because iterative decoding is optimal on codes with cycle-free graph representations, we ask fundamental questions about the construction and parameters of cycle-free window codes. We show that it is possible to have an SC-LDPC code with cycles and with cycle-free window codes. We consider the relationship between the distance of the window code and the distance of the SC-LDPC code. Further, we show that SC-LDPC codes with MDS window codes exist, and all such codes are asymptotically bad. This work gives insight into the tradeoffs between window code parameters and performance of the SC-LDPC code.more » « less
-
Many applications of representation learning, such as privacy preservation, algorithmic fairness, and domain adaptation, desire explicit control over semantic information being discarded. This goal is formulated as satisfying two objectives: maximizing utility for predicting a target attribute while simultaneously being invariant (independent) to a known semantic attribute. Solutions to invariant representation learning (IRepL) problems lead to a trade-off between utility and invariance when they are competing. While existing works study bounds on this trade-off, two questions remain outstanding: 1) What is the exact trade-off between utility and invariance? and 2) What are the encoders (mapping the data to a representation) that achieve the trade-off, and how can we estimate it from training data? This paper addresses these questions for IRepLs in reproducing kernel Hilbert spaces (RKHS)s. Under the assumption that the distribution of a low-dimensional projection of high-dimensional data is approximately normal, we derive a closed-form solution for the global optima of the underlying optimization problem for encoders in RKHSs. This yields closed formulae for a near-optimal trade-off, corresponding optimal representation dimensionality, and the corresponding encoder(s). We also numerically quantify the trade-off on representative problems and compare them to those achieved by baseline IRepL algorithms.more » « less
-
Grueber, Catherine E (Ed.)Abstract Landscape genomics can harness environmental and genetic data to inform conservation decisions by providing essential insights into how landscapes shape biodiversity. The massive increase in genetic data afforded by the genomic era provides exceptional resolution for answering critical conservation genetics questions. The accessibility of genomic data for non‐model systems has also enabled a shift away from population‐based sampling to individual‐based sampling, which now provides accurate and robust estimates of genetic variation that can be used to examine the spatial structure of genomic diversity, population connectivity and the nature of environmental adaptation. Nevertheless, the adoption of individual‐based sampling in conservation genetics has been slowed due, in large part, to concerns over how to apply methods developed for population‐based sampling to individual‐based sampling schemes. Here, we discuss the benefits of individual‐based sampling for conservation and describe how landscape genomic methods, paired with individual‐based sampling, can answer fundamental conservation questions. We have curated key landscape genomic methods into a user‐friendly, open‐source workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R (algatr). Thealgatrpackage includes novel added functionality for all of the included methods and extensive vignettes designed with the primary goal of making landscape genomic approaches more accessible and explicitly applicable to conservation biology.more » « less
An official website of the United States government
