Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Non-volatile memory (NVM) technologies such as spin-transfer torque magnetic random access memory (STT-MRAM) and spin-orbit torque magnetic random access memory (SOT-MRAM) have significant advantages compared to conventional SRAM due to their non-volatility, higher cell density, and scalability features. While previous work has investigated several architectural implications of NVM for generic applications, in this work we present DeepNVM, a framework to characterize, model, and analyze NVM-based caches in GPU architectures for deep learning (DL) applications by combining technologyspecific circuit-level models and the actual memory behavior of various DL workloads. We present both iso-capacity and isoarea performance and energy analysis for systems whose lastlevel caches rely on conventional SRAM and emerging STT-MRAM and SOT-MRAM technologies. In the iso-capacity case, STT-MRAM and SOT-MRAM provide up to 4.2× and 5× energy-delay product (EDP) reduction and 2.4× and 3× area reduction compared to conventional SRAM, respectively. Under iso-area assumptions, STT-MRAM and SOT-MRAM provide 2.3× EDP reduction on average across all workloads when compared to SRAM. Our comprehensive cross-layer framework is demonstrated on STT-/SOT-MRAM technologies and can be used for the characterization, modeling, and analysis of any NVM technology for last-level caches in GPU platforms for deep learning applications.more » « less
An official website of the United States government

Full Text Available