skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1815875

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Political and social scientists have been relying extensively on keywords such as hashtags to mine social movement data from social media sites, particularly Twitter. Yet, prior work demonstrates that unrepresentative keyword sets can lead to flawed research conclusions. Numerous keyword expansion methods have been proposed to increase the comprehensiveness of keywords, but systematic evaluations of these methods have been lacking. Our paper fills this gap. We evaluate five diverse keyword expansion techniques (or pipelines) on five representative social movements across two distinct activity levels. Our results guide researchers who aim to use social media keyword searches to mine data. For instance, we show that word embedding-based methods significantly outperform other even more complex and newer approaches when movements are in normal activity periods. These methods are also less computationally intensive. More importantly, we also observe that no single pipeline can identify little more than half of all movement-related tweets when these movements are at their peak mobilization period offline. However, coverage can increase significantly when more than one pipeline is used. This is true even when the pipelines are selected at random. 
    more » « less
  2. Online communities often overlap and coexist, despite incongruent norms and approaches to content moderation. When communities diverge, decentralized and federated communities may pursue group-level sanctions, including defederation (disconnection) to block communication between members of specific communities. We investigate the effects of defederation in the context of the Fediverse, a set of decentralized, interconnected social networks with independent governance. Mastodon and Pleroma, the most popular software powering the Fediverse, allow administrators on one server to defederate from another. We use a difference-in-differences approach and matched controls to estimate the effects of defederation events on participation and message toxicity among affected members of the blocked and blocking servers. We find that defederation causes a drop in activity for accounts on the blocked servers, but not on the blocking servers. Also, we find no evidence of an effect of defederation on message toxicity. 
    more » « less
  3. Social media enables activists to directly communicate with the public and provides a space for movement leaders, participants, bystanders, and opponents to collectively construct and contest narratives. Focusing on Twitter messages from social movements surrounding three issues in 2018-2019 (guns, immigration, and LGBTQ rights), we create a codebook, annotated dataset, and computational models to detect diagnostic (problem identification and attribution), prognostic (proposed solutions and tactics), and motivational (calls to action) framing strategies. We conduct an in-depth unsupervised linguistic analysis of each framing strategy, and uncover cross-movement similarities in associations between framing and linguistic features such as pronouns and deontic modal verbs. Finally, we compare framing strategies across issues and other social, cultural, and interactional contexts. For example, we show that diagnostic framing is more common in replies than original broadcast posts, and that social movement organizations focus much more on prognostic and motivational framing than journalists and ordinary citizens. 
    more » « less
  4. Social media enables the rapid spread of many kinds of information, from pop culture memes to social movements. However, little is known about how information crosses linguistic boundaries. We apply causal inference techniques on the European Twitter network to quantify the structural role and communication influence of multilingual users in cross-lingual information exchange. Overall, multilinguals play an essential role; posting in multiple languages increases betweenness centrality by 13%, and having a multilingual network neighbor increases monolinguals’ odds of sharing domains and hashtags from another language 16-fold and 4-fold, respectively. We further show that multilinguals have a greater impact on diffusing information is less accessible to their monolingual compatriots, such as information from far-away countries and content about regional politics, nascent social movements, and job opportunities. By highlighting information exchange across borders, this work sheds light on a crucial component of how information and ideas spread around the world. 
    more » « less
  5. Existing studies of social movement organizations (SMOs) commonly focus only on a small number of well-known SMOs or SMOs that belong to a single social movement industry (SMI). This is partially because current methods for identifying SMOs are labor-intensive. In contrast to these manual approaches, in our article, we use Twitter data pertaining to BlackLivesMatter and Women’s movements and employ crowdsourcing and nested supervised learning methods to identify more than 50K SMOs. Our results reveal that the behavior and influence of SMOs vary significantly, with half having little influence and behaving in similar ways to an average individual. Furthermore, we show that collectively, small SMOs contributed to the sharing of more diverse information. However, on average, large SMOs were significantly more committed to movements and decidedly more successful at recruiting. Finally, we also observe that a large number of SMOs from an extensive set of SMIs, including Occupy Wall Street, participated in solidarity or even as leaders in BlackLivesMatter. In comparison, few SMIs participated in Women’s movement. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)