skip to main content


Search for: All records

Award ID contains: 1815883

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Universal Serial Bus (USB) is the de facto protocol supported by peripherals and mobile devices, such as USB thumb drives and smartphones. For many devices, USB Type-C ports are the primary interface for charging, file transfer, audio, video, etc. Accordingly, attackers have exploited different vulnerabilities within USB stacks, compromising host machines via BadUSB attacks or jailbreaking iPhones from USB connections. While there exist fuzzing frameworks dedicated to USB vulnerability discovery, all of them focus on USB host stacks and ignore USB gadget stacks, which enable all the features within modern peripherals and smart devices. In this paper, we propose FUZZUSB, the first fuzzing framework for the USB gadget stack within commodity OS kernels, leveraging static analysis, symbolic execution, and stateful fuzzing. FUZZUSB combines static analysis and symbolic execution to extract internal state machines from USB gadget drivers, and uses them to achieve state-guided fuzzing through multi-channel in- puts. We have implemented FUZZUSB upon the syzkaller kernel fuzzer and applied it to the most recent mainline Linux, Android, and FreeBSD kernels. As a result, we have found 34 previously unknown bugs within the Linux and Android kernels, and opened 7 CVEs. Furthermore, compared to the baseline, FUZZUSB has also demonstrated different improvements, including 3× higher code coverage, 50× improved bug-finding efficiency for Linux USB gadget stacks, 2× higher code coverage for FreeBSD USB gadget stacks, and reproducing known bugs that could not be detected by the baseline fuzzers. We believe FUZZUSB provides developers a powerful tool to thwart USB-related vulnerabilities within modern devices and complete the current USB fuzzing scope. 
    more » « less
  2. Confidential computing aims to secure the code and data in use by providing a Trusted Execution Environment (TEE) for applications using hardware features such as Intel SGX.Timing and cache side-channel attacks, however, are often outside the scope of the threat model, although once exploited they are able to break all the default security guarantees enforced by hardware. Unfortunately, tools detecting potential side-channel vulnerabilities within applications are limited and usually ignore the strong attack model and the unique programming model imposed by Intel SGX. This paper proposes a precise side-channel analysis tool, ENCIDER, detecting both timing and cache side-channel vulnerabilities within SGX applications via inferring potential timing observation points and incorporating the SGX programming model into analysis. ENCIDER uses dynamic symbolic execution to decompose the side-channel requirement based on the bounded non-interference property and implements byte-level information flow tracking via API modeling. We have applied ENCIDER to 4 real-world SGX applications, 2 SGX crypto libraries, and 3 widely-used crypto libraries, and found 29 timing side channels and 73 code and data cache side channels. We have reported our findings to the corresponding parties, e.g., Intel and ARM, who have confirmed most of the vulnerabilities detected. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Extensibility is an important design goal for software frameworks that are expected to evolve in a variety of dimensions. Callback mechanism is utilized extensively in large frameworks to achieve extensibility. However, callback mechanism introduces implicit control-flow dependencies that make program comprehension and analysis difficult. This paper presents an automated approach for detecting deep bugs/vulnerabilities that involve callbacks. Our approach consists of several stages to balance scalability and precision. Specifically, it uses a light-weight static analysis for extracting callback related interactions between the application modules and the framework modules. This information is used to extend the basic call graph of the application modules to incorporate implicit call chains due to callbacks. The second stage, summary mode, summarizes bug relevant data-flow facts for paths that start at callbacks. The third stage, summary-aware mode, uses the extended call graph to incorporate data-flow facts due to implicit paths that lead to the callbacks and detects deep bugs. We have implemented the presented model extraction and bug detection approach in a framework called MOXCAFE and applied it to Linux device drivers. Using our approach, we could detect several deep vulnerabilities. 
    more » « less