skip to main content


Search for: All records

Award ID contains: 1816313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. In this paper, we consider an infinite-dimensional phase retrieval problem to reconstruct real-valued signals living in a shift-invariant space from their phaseless samples taken either on the whole line or on a discrete set with finite sampling density. We characterize all phase retrievable signals in a real-valued shift-invariant space using their nonseparability. For nonseparable signals generated by some function with support length L, we show that they can be well approximated, up to a sign, from their noisy phaseless samples taken on a discrete set with sampling density 2L-1 . In this paper, we also propose an algorithm with linear computational complexity to reconstruct nonseparable signals in a shift-invariant space from their phaseless samples corrupted by bounded noises. 
    more » « less
  3. null (Ed.)