skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Phase retrieval of real-valued signals in a shift-invariant space
In this paper, we consider an infinite-dimensional phase retrieval problem to reconstruct real-valued signals living in a shift-invariant space from their phaseless samples taken either on the whole line or on a discrete set with finite sampling density. We characterize all phase retrievable signals in a real-valued shift-invariant space using their nonseparability. For nonseparable signals generated by some function with support length L, we show that they can be well approximated, up to a sign, from their noisy phaseless samples taken on a discrete set with sampling density 2L-1 . In this paper, we also propose an algorithm with linear computational complexity to reconstruct nonseparable signals in a shift-invariant space from their phaseless samples corrupted by bounded noises.  more » « less
Award ID(s):
1816313
PAR ID:
10190812
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied and computational harmonic analysis
Volume:
49
Issue:
1
ISSN:
1096-603X
Page Range / eLocation ID:
56-73
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sampling in shift-invariant spaces is a realistic model for signals with smooth spectrum. In this paper, we consider phaseless sampling and reconstruction of real-valued signals in a high-dimensional shift-invariant space from their magnitude measurements on the whole Euclidean space and from their phaseless samples taken on a discrete set with finite sampling density. The determination of a signal in a shift-invariant space, up to a sign, by its magnitude measurements on the whole Euclidean space has been shown in the literature to be equivalent to its nonseparability. In this paper, we introduce an undirected graph associated with the signal in a shift-invariant space and use connectivity of the graph to characterize nonseparability of the signal. Under the local complement property assumption on a shift-invariant space, we find a discrete set with finite sampling density such that nonseparable signals in the shift-invariant space can be reconstructed in a stable way from their phaseless samples taken on that set. In this paper, we also propose a reconstruction algorithm which provides an approximation to the original signal when its noisy phaseless samples are available only. Finally, numerical simulations are performed to demonstrate the robustness of the proposed algorithm to reconstruct box spline signals from their noisy phaseless samples. 
    more » « less
  2. It is known that for $X$ a nowhere locally compact metric space, the set of bounded continuous, nowhere locally uniformly continuous real-valued functions on $X$ contains a dense $G_\delta$ set in the space $C_b(X)$ of all bounded continuous real-valued functions on $X$ in the supremum norm. Furthermore, when $X$ is separable, the set of bounded continuous, nowhere locally uniformly continuous real-valued functions on $X$ is itself a $G_\delta$ set. We show that in contrast, when $X$ is nonseparable, this set of functions is not even a Borel set. 
    more » « less
  3. null (Ed.)
    In this paper we revisit the problem of computing controlled invariant sets for controllable discrete-time linear systems and present a novel hierarchy for their computation. The key insight is to lift the problem to a higher dimensional space where the maximal controlled invariant set can be computed exactly and in closed-form for the lifted system. By projecting this set into the original space we obtain a controlled invariant set that is a subset of the maximal controlled invariant set for the original system. Building upon this insight we describe in this paper a hierarchy of spaces where the original problem can be lifted into so as to obtain a sequence of increasing controlled invariant sets. The algorithm that results from the proposed hierarchy does not rely on iterative computations. We illustrate the performance of the proposed method on a variety of scenarios exemplifying its appeal. 
    more » « less
  4. null (Ed.)
    Generative Adversarial Networks (GANs), while widely successful in modeling complex data distributions, have not yet been sufficiently leveraged in scientific computing and design. Reasons for this include the lack of flexibility of GANs to represent discrete-valued image data, as well as the lack of control over physical properties of generated samples. We propose a new conditional generative modeling approach (InvNet) that efficiently enables modeling discrete-valued images, while allowing control over their parameterized geometric and statistical properties. We evaluate our approach on several synthetic and real world problems: navigating manifolds of geometric shapes with desired sizes; generation of binary two-phase materials; and the (challenging) problem of generating multi-orientation polycrystalline microstructures. 
    more » « less
  5. null (Ed.)
    In this paper we revisit the problem of computing controlled invariant sets for controllable discrete-time linear systems. We propose a novel algorithm that does not rely on iterative computations. Instead, controlled invariant sets are computed in two moves: 1) we lift the problem to a higher dimensional space where a controlled invariant set is computed in closed-form; 2) we project the resulting set back to the original domain to obtain the desired controlled invariant set. One of the advantages of the proposed method is the ability to handle larger systems. 
    more » « less