skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1816449

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Variable order structures model situations in which the comparison between two points depends on a point-to-cone map. In this paper, inexact projected gradient methods for solving smooth constrained vector optimization problems on variable ordered spaces are presented. It is shown that every accumulation point of the generated sequences satisfies the first-order necessary optimality condition. Moreover, under suitable convexity assumptions for the objective function, it is proved that all accumulation points of any generated sequences are weakly efficient points. The convergence results are also derived in the particular case in which the problem is unconstrained and even if inexact directions are taken as descent directions. Furthermore, we investigate the application of the proposed method to optimization models where the domain of the variable order map coincides with the image of the objective function. In this case, similar concepts and convergence results are presented. Finally, some computational experiments designed to illustrate the behavior of the proposed inexact methods versus the exact ones (in terms of CPU time) are performed. 
    more » « less
  2. In this paper, we generalize the classical extragradient algorithm for solving variational inequality problems by utilizing nonzero normal vectors of the feasible set. In particular, conceptual algorithms are proposed with two different linesearchs. We then establish convergence results for these algorithms under mild assumptions. Our study suggests that nonzero normal vectors may significantly improve convergence if chosen appropriately. 
    more » « less