skip to main content

Search for: All records

Award ID contains: 1816984

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Direct detection of gravitational waves (GWs) on 17 August 2017, propagating from a binary neutron star merger, or a “kilonova”, opened the era of multimessenger astronomy. The ejected material from neutron star mergers, or “kilonova”, is a good candidate for optical and near infrared follow-up observations after the detection of GWs. The kilonova from the ejecta of GW1780817 provided the first evidence for the astrophysical site of the synthesis of heavy nuclei through the rapid neutron capture process or r-process. Since properties of the emission are largely affected by opacities of the ejected material, enhancements in the available r-process data is important for neutron star merger modeling. However, given the complexity of the electronic structure of these heavy elements, considerable efforts are still needed to converge to a reliable set of atomic structure data. The aim of this work is to alleviate this situation for low charge state elements in the Os-like isoelectronic sequence. In this regard, the general-purpose relativistic atomic structure packages (GRASP0 and GRASP2K) were used to obtain energy levels and transition probabilities (E1 and M1). We provide line lists and expansion opacities for a range of r-process elements. We focus here on the Os isoelectronic sequence (Osmore »I, Ir II, Pt III, Au IV, Hg V). The results are benchmarked against existing experimental data and prior calculations, and predictions of emission spectra relevant to kilonovae are provided. Fine-structure (M1) lines in the infrared potentially observable by the James Webb Space Telescope are highlighted.« less
  2. ABSTRACT Neutron binary star mergers have long been proposed as sufficiently neutron rich environments that could support the synthesis of rapid neutron capture elements (r-process elements) such as gold. However, the literature reveals that beyond neutral and singly ionized systems, there is an incompleteness of atomic data for the remaining ion stages of importance for mergers. In this work, we report on relativistic atomic structure calculations for Au i–Au iii using the grasp0 codes. Comparisons to calculations using the Flexible Atomic Code suggest uncertainties on average of 9.2 per cent, 5.7 per cent, and 3.8 per cent for Au i–Au iii level energies. Agreement around ∼50 per cent is achieved between our computed A-values and those in the literature, where available. Using the grasp0 structure of Au i, we calculated electron-impact excitation rate coefficients and use a collisional-radiative model to explore the excitation dynamics and line ratio diagnostics possible in neutron star merger environments. We find that proper accounting of metastable populations is critical for extracting useful information from ultraviolet–visible line ratio diagnostics of Au i. As a test of our data, we applied our electron-impact data to study a gold hollow cathode spectrum in the literature and diagnosed the plasma conditions as Te = 3.1 ± 1.2 eV and $n_\textrm {e} = 2.7^{+1.3}_{-0.9}\times 10^{13}$ cm−3.
  3. Abstract Two papers recently reported the detection of gaseous nickel and iron in the comae of over 20 comets from observations collected over two decades, including interstellar comet 2I/Borisov. To evaluate the state of the laboratory data in support of these identifications, we reanalyzed archived spectra of comet C/1996 B2 (Hyakutake), one of the nearest and brightest comets of the past century, using a combined experimental and computational approach. We developed a new, many-level fluorescence model that indicates that the fluorescence emissions of Fe I and Ni I vary greatly with heliocentric velocity. Combining this model with laboratory spectra of an Fe-Ni plasma, we identified 22 lines of Fe I and 14 lines of Ni I in the spectrum of Hyakutake. Using Haser models, we estimate the nickel and iron production rates as Q Ni = (2.6–4.1) × 10 22 s −1 and Q Fe = (0.4–2.8) × 10 23 s −1 . From derived column densities, the Ni/Fe abundance ratio log 10 [Ni/Fe] = −0.15 ± 0.07 deviates significantly from solar abundance ratios, and it is consistent with the ratios observed in solar system comets. Possible production and emission mechanisms are analyzed in the context of existing laboratory measurements.more »Based on the observed spatial distributions, excellent fluorescence model agreement, and Ni/Fe ratio, our findings support an origin consisting of a short-lived unknown parent followed by fluorescence emission. Our models suggest that the strong heliocentric velocity dependence of the fluorescence efficiencies can provide a meaningful test of the physical process responsible for the Fe I and Ni I emission.« less
  4. The time-dependent close-coupling method has been recently applied to calculate electron impact direct ionization cross sections for the Kr, W, and Pb atoms. An overview is presented for these three heavy neutral atom systems. When the direct ionization cross sections are combined with excitation-autoionization cross sections, the total ionization cross sections were found to be in reasonable agreement with crossed-beams measurements for Kr and Pb.
  5. The recent detection of a neutron star merger by the LIGO collaboration has renewed interest in laboratory studies of r-process elements. Accurate modeling and interpretation of the electromagnetic transients following the mergers requires computationally expensive calculations of both the structure and opacity of all trans-iron elements. To date, the necessary atomic data to benchmark structure codes are incomplete or, in some cases, absent entirely. Within the available laboratory studies, the literature on Au I and Au II provides incomplete reports of the emission lines and level structures. We present a new study of Au I and Au II lines and levels by exposing a solid gold target to plasma in the Compact Toroidal Hybrid (CTH) experiment at Auburn University. A wavelength range from 187 to 800 nm was studied. In Au I, 86 lines are observed, 43 of which are unreported in the literature, and the energies of 18 5d9 6s 6p levels and 16 of the 18 known 5d9 6s 6d levels are corroborated by a least-squares level energy optimization. In Au II, 76 emission lines are observed, and 51 of the lines are unreported in the literature. For both Au I and Au II, the new lines predominantlymore »originate from the most energetic of the known levels, and over half of the new Au II lines have wavelengths longer than 300 nm. For the estimated electron parameters of CTH plasmas at the gold target (ne~10^12 cm−3, Te~10 eV), two-electron transitions are similar in intensity to LS-allowed one-electron transitions.« less