Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Once considered mere structural support cells in the nervous system, glia have recently been demonstrated to play pivotal roles in sensorimotor processing and to directly respond to sensory stimuli. However, their response properties and contributions to sensory-induced behaviors remain little understood. InCaenorhabditis elegans, the amphid sheath glia (AMsh) directly respond to aversive odorants and mechanical stimuli, but their precise transduction machinery and their behavioral relevance remain unclear. We investigated the role of AMsh in mechanosensation and their impact on escape behaviors inC. elegans. We found that nose touch stimuli in immobilized animals induced a slow calcium wave in AMsh, which coincided with the termination of escape reversal behaviors. Genetic ablation of AMsh resulted in prolonged reversal durations in response to nose touch, but not to harsh anterior touch, highlighting the specificity of AMsh’s role in distinct escape behaviors. Mechanotransduction in AMsh requires the α-tubulin MEC-12 and the ion channels ITR-1 and OSM-9, indicating a unique mechanosensory pathway that is distinct from the neighboring ASH neurons. We find that GABAergic signaling mediated by the GABA-A receptor orthologs LGC-37/8 and UNC-49 play a crucial role in modulating the duration of nose touch-induced reversals. We conclude that in addition to aversive odorant detection, AMsh mediate mechanosensation, play a pivotal role in terminating escape responses to nose touch, and provide a mechanism to maintain high sensitivity to polymodal sensory stimuli. SignificancePolymodal nociceptive sensory neurons have the challenge of multitasking across sensory modalities. They must respond to dangerous stimuli of one modality, but also adapt to repeated nonthreatening stimuli without compromising sensitivity to harmful stimuli from different modalities. Here we show that a pair of glia in the nematodeC. elegansmodulate the duration of nose-touch induced escape responses. We identify several molecules involved in the transduction of mechanical stimuli in these cells and show that they use the signaling molecule GABA to modulate neural function. We propose a mechanism through which these glia might function to maintain this polysensory neuron responsive to dangerous stimuli across different modalities.more » « less
-
Abstract To successfully navigate their surroundings, animals detect and orient to environmental stimuli possessing unique physical properties. Most animals can derive directional information from spatial or temporal changes in stimulus intensity (e.g. chemo- and thermo-taxis). However, some biologically relevant stimuli have constant intensity at most organismal scales. The gravitational and magnetic fields of the earth are examples of uniform stimuli that remain constant at most relevant scales. While devoid of information associated with intensity changes, the vectorial nature of these fields intrinsically encodes directional information. While much is known about behavioral strategies that exploit changes in stimulus intensity (gradients), less is understood about orientation to uniform stimuli. Nowhere is this truer than with magnetic orientation. While many organisms are known to orient to the magnetic field of the earth, how these animals extract information from the earth’s magnetic field remains unresolved. Here we use the nematodeC. elegansto investigate behavioral strategies for orientation to magnetic fields, and compare our findings to the better characterized chemical and thermal orientation strategies. We used an unbiased cluster analysis to categorize, quantify, and compare behavioral components underlying different orientation strategies as a way to quantify and compare animal orientation to distinct stimuli. We find that in the presence of an earth-like magnetic field, worms perform acute angle turns (140-171°) that significantly improved their alignment with the direction of an imposed magnetic vector. In contrast, animals performed high amplitude turns (46-82°) that significantly increased alignment of their trajectory with the preferred migratory angle. We conclude thatC. elegansorients to earth-strength magnetic fields using two independent behavioral strategies, in contrast to orientation strategies to graded stimuli. Understanding howC. elegansdetects and orients to magnetic fields will provide useful insight into how many species across taxa accomplish this fascinating sensory feat.more » « less
-
Life on Earth evolved under a specific set of environmental conditions, including consistent gravitational and magnetic fields. However, planned human missions to Mars in the coming decades will expose terrestrial organisms to radically different conditions, with Martian gravity being approximately 38% of Earth's and a significantly reduced magnetic field. Understanding the combined effects of these factors is crucial, as they may impact biological systems that evolved under different conditions. In this study, we investigated the effects of simulated Martian gravity and hypomagnetic fields on the nematode Caenorhabditis elegans across six generations. We used an integrated experimental setup consisting of clinostats to mimic the reduced Martian gravity, and Merritt coil magnetic cages to model the decreased Martian magnetic fields. We assessed behavioral, morphological, and physiological responses of C. elegans. High-throughput automated assays revealed significant reductions in motor output and morphological dimensions for animals in the Mars treatment compared to matched earth-like controls. We assessed neurological function by means of chemotaxis assays and found a progressive decline in performance for worms raised under the Martian paradigm compared to Earth controls. Our results show that worms grown under Martian-like conditions exhibit progressive physiological alterations across generations, suggesting that the unique environment of Mars might pose challenges to biological function and adaptation. These findings contribute to understanding how living organisms may respond to the combined effects of reduced gravity and hypomagnetic fields, providing insights relevant for future human exploration and potential colonization of Mars.more » « less
-
Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins that are widely expressed in neuronal and muscular tissues. This study explores the role of the mechanoreceptor PEZO-1 in the body wall muscles of Caenorhabditis elegans, focusing on its influence on two locomotor behaviors, swimming and crawling. Using confocal imaging, we reveal that PEZO-1 localizes to the sarcolemma and plays a crucial role in modulating calcium dynamics that are important for muscle contraction. When we knocked down pezo-1 expression in striated muscles with RNA interference, calcium levels in head and tail muscles increased. While heightened, the overall trajectory of the calcium signal during the crawl cycle remained the same. While downregulation of pezo-1 led to an increase in crawling speed, it caused a reduction in swimming speed. Reduction in pezo-1 expression also resulted in the increased activation of the ventral tail muscles, and a disruption of dorsoventral movement asymmetry, a critical feature that enables propulsion in water. These alterations were correlated with impaired swimming posture and path curvature, suggesting that PEZO-1 has different functions during swimming and crawling.more » « less
-
The discovery in 2010 of the PIEZO family of mechanoreceptors revolutionized our understanding of the role of proprioceptive feedback in mammalian physiology. Much remains to be elucidated. This study looks at the role this receptor plays in normal locomotion. Like humans, the nematode C. elegans expresses PIEZO-type channels (encoded by the pezo-1 gene) throughout its somatic musculature. Here we use the unbiased automated behavioral software Tierpsy to characterize the effects that mutations removing PEZO-1 from body wall musculature have on C. elegans crawling. We find that loss of PEZO-1 results in disrupted locomotion and posture, consistent with phenotypes associated with loss of PIEZO2 in human musculature. C. elegans is thus an amenable system to study the role of mechanoreception on muscle physiology and function.more » « less
-
For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na + /K + -pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, Procambarus virginalis , is suited to become a genetic model system for crustacean neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the ‘Receptor-mediated ovary transduction of cargo’ (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.more » « less
-
Distinct mechanoreceptor pezo-1 isoforms modulate food intake in the nematode Caenorhabditis elegansnull (Ed.)Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the distinct tissues where they are expressed remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have twelve isoforms. These isoforms share many transmembrane domains, but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. Here we use translational and transcriptional reporters to show that long pezo-1 isoforms are selectively expressed in mesodermally derived tissues (such as muscle and glands). In contrast, shorter pezo-1 isoforms are primarily expressed in neurons. In the digestive system, different pezo-1 isoforms appear to be expressed in different cells of the same organ. We show that pharyngeal muscles, glands, and valve rely on long pezo-1 isoforms to respond appropriately to the presence of food. The unique pattern of complementary expression of pezo-1 isoforms suggest that different isoforms possess distinct functions. The number of pezo-1 isoforms in C. elegans, their differential pattern of expression, and their roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.more » « less
-
Raciti, Daniela (Ed.)For decades the nematode C. elegans has served as an outstanding research organism owing to its unsurpassed experimental amenability. This advantage has also made this tiny worm an attractive vehicle for science instruction across higher learning institutions. However, the prohibitive cost associated with the automated behavioral assessment of these animals remains an obstacle preventing their full adoption in undergraduate and high school settings. To improve this situation, we developed an inexpensive worm tracking system for use by high school interns and undergraduate students. Over the past two years this tracker has been successfully used by undergraduate students in our introductory Cell and Molecular lab (BSC220) at Illinois State University. Here we describe and demonstrate the use of our inexpensive worm tracking system.more » « less
An official website of the United States government

Full Text Available