Abstract Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) ofMolgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory geneEbf (Collier/Olf/EBF)was reduced in the developing MG ofM. occultawhen compared with molgulid species with swimming larvae. This was corroborated by measuring allele‐specific expression ofEbfin hybrid embryos from crosses ofM. occultawith the swimming speciesM. oculata. Heterologous reporter construct assays in the model tunicate speciesCiona robustarevealed a specificcis‐regulatory sequence change that reduces expression ofEbfin the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified inM. occultalarvae, but their differentiation might be impaired due to reduction ofEbfexpression levels.
more »
« less
Muscular expression of pezo-1 differentially contributes to swimming and crawling production in the nematode C. elegans.
Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins that are widely expressed in neuronal and muscular tissues. This study explores the role of the mechanoreceptor PEZO-1 in the body wall muscles of Caenorhabditis elegans, focusing on its influence on two locomotor behaviors, swimming and crawling. Using confocal imaging, we reveal that PEZO-1 localizes to the sarcolemma and plays a crucial role in modulating calcium dynamics that are important for muscle contraction. When we knocked down pezo-1 expression in striated muscles with RNA interference, calcium levels in head and tail muscles increased. While heightened, the overall trajectory of the calcium signal during the crawl cycle remained the same. While downregulation of pezo-1 led to an increase in crawling speed, it caused a reduction in swimming speed. Reduction in pezo-1 expression also resulted in the increased activation of the ventral tail muscles, and a disruption of dorsoventral movement asymmetry, a critical feature that enables propulsion in water. These alterations were correlated with impaired swimming posture and path curvature, suggesting that PEZO-1 has different functions during swimming and crawling.
more »
« less
- Award ID(s):
- 1818140
- PAR ID:
- 10553911
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Planktonic organisms feed while suspended in water using various hydrodynamic pumping strategies. Appendicularians are a unique group of plankton that use their tail to pump water over mucous mesh filters to concentrate food particles. As ubiquitous and often abundant members of planktonic ecosystems, they play a major role in oceanic food webs. Yet, we lack a complete understanding of the fluid flow that underpins their filtration. Using high-speed, high-resolution video and micro particle image velocimetry, we describe the kinematics and hydrodynamics of the tail inOikopleura dioicain filtering and free-swimming postures. We show that sinusoidal waves of the tail generate peristaltic pumping within the tail chamber with fluid moving parallel to the tail when filtering. We find that the tail contacts attachment points along the tail chamber during each beat cycle, serving to seal the tail chamber and drive pumping. When we tested how the pump performs across environmentally relevant temperatures, we found that the amplitude of the tail was invariant but tail beat frequency increased threefold across three temperature treatments (5°C, 15°C and 25°C). Investigation into this unique pumping mechanism gives insight into the ecological success of appendicularians and provides inspiration for novel pump designs.more » « less
-
The bodies of most swimming fishes are very flexible and deform due to both external fluid dynamic forces and internal musculoskeletal forces. If fluid forces change, the body motion will also change unless the fish senses the change and alters its muscle activity to compensate. Lampreys and other fishes have mechanosensory cells in their spinal cords that allow them to sense how their body is bending. We hypothesized that lampreys (Petromyzon marinus) actively regulate body curvature to maintaina fairly constant swimming waveform even as swimming speed and fluid dynamic forces change. To test this hypothesis, we measured the steady swimming kinematics of lampreys swimming in normal water, and water in which the viscosity was increased by 10 or 20 times by adding methylcellulose. Increasing the viscosity over this range increases the drag coefficient, potentially increasing fluid forces up to 40%. Previous computational results suggested that if lampreys did not compensate for these forces, the swimming speed would drop by about 52%, the amplitude would drop by 39%, and posterior body curvature would increase by about 31% , while tail beat frequency would remain the same. Five juvenile sea lampreys were filmed swimming through still water, and midlines were digitized using standard techniques. Although swimming speed dropped by 44% from 1× to 10× viscosity, amplitude only decreased by 4% , and curvature increased by 7%, a much smaller change than the amount we estimated if there was no compensation. To examine the waveform overall, we performed a complex orthogonal decomposition and found that the first mode of the swimming waveform (the primary swimming pattern) did not change substantially, even at 20× viscosity. Thus, it appears that lampreys are compensating, at least partially, for the changes in viscosity, which in turn suggests that sensory feedback is involved in regulating the body waveform.more » « less
-
Locomotion is vital to the survival and fitness of animals and dominates daily energy budgets. The main energy consuming process of locomotion is the muscle activity needed to maintain stability or generate propulsive forces. In fish, the speed of swimming is thought to depend on the gait type, which may reflect an energetically efficient locomotory behavior. Bluegill Sunfish (Lepomis macrochirus) exhibit either steady or intermittent (burst-coast) gaits when swimming in the field, but whether these gaits differ in their energetic efficiency is unknown. We analyzed the electromyography (EMG) of oxidative muscle in Bluegill swimming at low velocities to determine if steady swimming is more or less energetically efficient than intermittent swimming. EMG data were acquired using bipolar fine wire electrodes implanted into oxidative musculature at 2/3 tail length. Steady swimming EMGs were recorded in a flume (fish treadmill) at incrementally increasing speeds relative to body length, until nonoxidative muscle was recruited. As speed increased, EMG intensity increased, which corresponds to increased muscle recruitment. Fish reached maximum EMG intensity (100% oxidative muscle capacity) between 1.75 - 2.25 BL/s. Intermittent swimming EMGs were recorded while the fish swam volitionally in a pool. The burst phase consisted of 2-3 tailbeats, followed by a coast phase duration of 1 second or less. Based on preliminary results, fish in the pool swam at an average of 62.1% (n = 10) of their maximum oxidative capacity. When intermittently swimming, muscle activity was 37.9% more efficient than steady swimming at similar speeds. This demonstrates that when swimming volitionally Bluegill choose the most energetically effective gait. However, further analysis is needed to determine how individual variation affects swimming performance. Continued comparison of these methods of locomotion will broaden the understanding of energy decisions that fish make. These results suggest that intermittent swimming is the more energetically efficient form of aquatic locomotion. This work is supported by NSF grant award number 2135851.more » « less
-
Locomotion dominates animal energy budgets, and selection should favour behaviours that minimize transportation costs. Recent fieldwork has altered our understanding of the preferred modes of locomotion in fishes. For instance, bluegill employ a sustainable intermittent swimming form with 2–3 tail beats alternating with short glides. Volitional swimming studies in the laboratory with bluegill suggest that the propulsive phase reflects a fixed-gear constraint on body–caudal-fin activity. Largemouth bass ( Micropterus salmoides ) also reportedly display intermittent swimming in the field. We examined swimming by bass in a static tank to quantify the parameters of volitional locomotion, including tailbeat frequency and glide duration, across a range of swimming speeds. We found that tailbeat frequency was not related to speed at low swimming speeds. Instead, speed was a function of glide duration between propulsive events, with glide duration decreasing as speed increased. The propulsive Strouhal number remained within the range that maximizes propulsive efficiency. We used muscle mechanics experiments to simulate power production by muscle operating under intermittent versus steady conditions. Workloop data suggest that intermittent activity allows fish to swim efficiently and avoid the drag-induced greater energetic cost of continuous swimming. The results offer support for a new perspective on fish locomotion: intermittent swimming is crucial to aerobic swimming energetics.more » « less
An official website of the United States government

