skip to main content


Search for: All records

Award ID contains: 1818229

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Canonical eukaryotic mRNA translation requires 5′cap recognition by initiation factor 4E (eIF4E). In contrast, many positive-strand RNA virus genomes lack a 5′cap and promote translation by non-canonical mechanisms. Among plant viruses, PTEs are a major class of cap-independent translation enhancers located in/near the 3′UTR that recruit eIF4E to greatly enhance viral translation. Previous work proposed a single form of PTE characterized by a Y-shaped secondary structure with two terminal stem-loops (SL1 and SL2) atop a supporting stem containing a large, G-rich asymmetric loop that forms an essential pseudoknot (PK) involving C/U residues located between SL1 and SL2. We found that PTEs with less than three consecutive cytidylates available for PK formation have an upstream stem-loop that forms a kissing loop interaction with the apical loop of SL2, important for formation/stabilization of PK. PKs found in both subclasses of PTE assume a specific conformation with a hyperreactive guanylate (G*) in SHAPE structure probing, previously found critical for binding eIF4E. While PTE PKs were proposed to be formed by Watson–Crick base-pairing, alternative chemical probing and 3D modeling indicate that the Watson–Crick faces of G* and an adjacent guanylate have high solvent accessibilities. Thus, PTE PKs are likely composed primarily of non-canonical interactions.

     
    more » « less
  2. Two-dimensional drawing of nucleic acid structures, particularly RNA structures, is fundamental to the communication of nucleic acids research. However, manually drawing structures is laborious and infeasible for structures thousands of nucleotides long. RNAcanvas automatically arranges residues into strictly shaped stems and loops while providing robust interactive editing features, including click-and-drag layout adjustment. Drawn elements are highly customizable in a point-and-click manner, including colours, fonts, size and shading, flexible numbering, and outlining of bases. Tertiary interactions can be drawn as draggable, curved lines. Leontis-Westhof notation for depicting non-canonical base-pairs is fully supported, as well as text labels for structural features (e.g., hairpins). RNAcanvas also has many unique features and performance optimizations for large structures that cannot be correctly predicted and require manual refinement based on the researcher’s own analyses and expertise. To this end, RNAcanvas has point-and-click structure editing with real-time highlighting of complementary sequences and motif search functionality, novel features that greatly aid in the identification of putative long-range tertiary interactions, de novo analysis of local structures, and phylogenetic comparisons. For ease in producing publication quality figures, drawings can be exported in both SVG and PowerPoint formats. URL: https://rnacanvas.app 
    more » « less
  3. The cap-independent translation of plus-strand RNA plant viruses frequently depends on 3′ structures to attract translation initiation factors that bind ribosomal subunits or bind directly to ribosomes. Umbraviruses are excellent models for studying 3′ cap-independent translation enhancers (3′CITEs), as umbraviruses can have different 3′CITEs in the central region of their lengthy 3′UTRs, and most also have a particular 3′CITE (the T-shaped structure or 3′TSS) near their 3′ ends. We discovered a novel hairpin just upstream of the centrally located (known or putative) 3′CITEs in all 14 umbraviruses. These CITE-associated structures (CASs) have conserved sequences in their apical loops and at the stem base and adjacent positions. In 11 umbraviruses, CASs are preceded by two small hairpins joined by a putative kissing loop interaction (KL). Converting the conserved 6-nt apical loop to a GNRA tetraloop in opium poppy mosaic virus (OPMV) and pea enation mosaic virus 2 (PEMV2) enhanced translation of genomic (g)RNA, but not subgenomic (sg)RNA reporter constructs, and significantly repressed virus accumulation in Nicotiana benthamiana. Other alterations throughout OPMV CAS also repressed virus accumulation and only enhanced sgRNA reporter translation, while mutations in the lower stem repressed gRNA reporter translation. Similar mutations in the PEMV2 CAS also repressed accumulation but did not significantly affect gRNA or sgRNA reporter translation, with the exception of deletion of the entire hairpin, which only reduced translation of the gRNA reporter. OPMV CAS mutations had little effect on the downstream BTE 3′CITE or upstream KL element, while PEMV2 CAS mutations significantly altered KL structures. These results introduce an additional element associated with different 3′CITEs that differentially affect the structure and translation of different umbraviruses. 
    more » « less
  4. The 3′ untranslated regions (UTRs) of positive-strand RNA plant viruses commonly contain elements that promote viral replication and translation. The ~700 nt 3′UTR of umbravirus pea enation mosaic virus 2 (PEMV2) contains three 3′ cap-independent translation enhancers (3′CITEs), including one (PTE) found in members of several genera in the family Tombusviridae and another (the 3′TSS) found in numerous umbraviruses and several carmoviruses. In addition, three 3′ terminal replication elements are found in nearly every umbravirus and carmovirus. For this report, we have identified a set of three hairpins and a putative pseudoknot, collectively termed “Trio”, that are exclusively found in a subset of umbraviruses and are located just upstream of the 3′TSS. Modification of these elements had no impact on viral translation in wheat germ extracts or in translation of luciferase reporter constructs in vivo. In contrast, Trio hairpins were critical for viral RNA accumulation in Arabidopsis thaliana protoplasts and for replication of a non-autonomously replicating replicon using a trans-replication system in Nicotiana benthamiana leaves. Trio and other 3′ terminal elements involved in viral replication are highly conserved in umbraviruses possessing different classes of upstream 3′CITEs, suggesting conservation of replication mechanisms among umbraviruses despite variation in mechanisms for translation enhancement. 
    more » « less
  5. Dutch, Rebecca Ellis (Ed.)
    ABSTRACT Translation of plant plus-strand RNA viral genomes that lack a 5′ cap frequently requires the use of cap-independent translation enhancers (CITEs) located in or near the 3′ untranslated region (UTR). 3′CITEs are grouped based on secondary structure and ability to interact with different translation initiation factors or ribosomal subunits, which assemble a complex at the 3′ end that is nearly always transferred to the 5′ end via a long-distance kissing-loop interaction between sequences in the 3′CITE and 5′ hairpins. We report here the identification of a novel 3′CITE in coat protein-deficient RNA replicons that are related to umbraviruses. Umbra-like associated RNAs (ulaRNAs), such as citrus yellow vein-associated virus (CYVaV), are a new type of subviral RNA that do not encode movement proteins, coat proteins, or silencing suppressors but can independently replicate using their encoded RNA-dependent RNA polymerase. An extended hairpin structure containing multiple internal loops in the 3′ UTR of CYVaV is strongly conserved in the most closely related ulaRNAs and structurally resembles an I-shaped structure (ISS) 3′CITE. However, unlike ISS, the CYVaV structure binds to eIF4G and no long-distance interaction is discernible between the CYVaV ISS-like structure and sequences at or near the 5′ end. We also report that the ∼30-nucleotide (nt) 5′ terminal hairpin of CYVaV and related ulaRNAs can enhance translation of reporter constructs when associated with either the CYVaV 3′CITE or the 3′CITEs of umbravirus pea enation mosaic virus (PEMV2) and even independent of a 3′CITE. These findings introduce a new type of 3′CITE and provide the first information on translation of ulaRNAs. IMPORTANCE Umbra-like associated RNAs (ulaRNAs) are a recently discovered type of subviral RNA that use their encoded RNA-dependent RNA polymerase for replication but do not encode any coat proteins, movement proteins, or silencing suppressors yet can be found in plants in the absence of any discernible helper virus. We report the first analysis of their translation using class 2 ulaRNA citrus yellow vein-associated virus (CYVaV). CYVaV uses a novel eIF4G-binding I-shaped structure as its 3′ cap-independent translation enhancer (3′CITE), which does not connect with the 5′ end by a long-distance RNA:RNA interaction that is typical of 3′CITEs. ulaRNA 5′ terminal hairpins can also enhance translation in association with cognate 3′CITEs or those of related ulaRNAs and, to a lesser extent, with 3′CITEs of umbraviruses, or even independent of a 3′CITE. These findings introduce a new type of 3′CITE and provide the first information on translation of ulaRNAs. 
    more » « less
  6. null (Ed.)
    The complete genome of a new umbra-like virus from edible fig (Ficus carica) was identified by high-throughput sequencing. Based on its similarity to umbra-like virus genome sequences available in GenBank, the proposed name of this new virus is "fig umbra-like virus" (FULV). The genome of full-length FULV-1 consists of 3049 nucleotides organized into three open reading frames (ORFs). Pairwise comparisons showed that the complete nucleotide sequence of the virus had the highest identity (71.3%) to citrus yellow vein-associated virus (CYVaV). In addition, phylogenetic trees based on whole-genome nucleotide sequences and amino acid sequences of the RNA-dependent RNA polymerase showed that FULV forms a monophyletic lineage with CYVaV and other umbra-like viruses. Based on the demarcation criteria of the genus Umbravirus, and lack of two umbravirus ORFs, we propose that FULV is a putative new member of the umbra-like virus clade within the family Tombusviridae. 
    more » « less
  7. null (Ed.)
    Citrus yellow-vein disease (CYVD) was first reported in California in 1957. We now report that CYVD is associated with a virus-like agent, provisionally named citrus yellow-vein associated virus (CYVaV). The CYVaV RNA genome has 2,692 nucleotides and codes for two discernable open reading frames (ORFs). ORF1 encodes a protein of 190 amino acid (aa) whereas ORF2 is presumably generated by a −1 ribosomal frameshifting event just upstream of the ORF1 termination signal. The frameshift product (717 aa) encodes the RNA-dependent RNA polymerase (RdRp). Phylogenetic analyses suggest that CYVaV is closely related to unclassified virus-like RNAs in the family Tombusviridae . Bio-indexing and RNA-seq experiments indicate that CYVaV can induce yellow vein symptoms independently of known citrus viruses or viroids. 
    more » « less
  8. Dutch, Rebecca Ellis. (Ed.)
    ABSTRACT Opium poppy mosaic virus (OPMV) is a recently discovered umbravirus in the family Tombusviridae . OPMV has a plus-sense genomic RNA (gRNA) of 4,241 nucleotides (nt) from which replication protein p35 and p35 extension product p98, the RNA-dependent RNA polymerase (RdRp), are expressed. Movement proteins p27 (long distance) and p28 (cell to cell) are expressed from a 1,440-nt subgenomic RNA (sgRNA2). A highly conserved structure was identified just upstream from the sgRNA2 transcription start site in all umbraviruses, which includes a carmovirus consensus sequence, denoting generation by an RdRp-mediated mechanism. OPMV also has a second sgRNA of 1,554 nt (sgRNA1) that starts just downstream of a canonical exoribonuclease-resistant sequence (xrRNA D ). sgRNA1 codes for a 30-kDa protein in vitro that is in frame with p28 and cannot be synthesized in other umbraviruses. Eliminating sgRNA1 or truncating the p30 open reading frame (ORF) without affecting p28 substantially reduced accumulation of OPMV gRNA, suggesting a functional role for the protein. The 652-nt 3′ untranslated region of OPMV contains two 3′ cap-independent translation enhancers (3′ CITEs), a T-shaped structure (TSS) near its 3′ end, and a Barley yellow dwarf virus -like translation element (BTE) in the central region. Only the BTE is functional in luciferase reporter constructs containing gRNA or sgRNA2 5′ sequences in vivo , which differs from how umbravirus 3′ CITEs were used in a previous study. Similarly to most 3′ CITEs, the OPMV BTE links to the 5′ end via a long-distance RNA-RNA interaction. Analysis of 14 BTEs revealed additional conserved sequences and structural features beyond the previously identified 17-nt conserved sequence. IMPORTANCE Opium poppy mosaic virus (OPMV) is an umbravirus in the family Tombusviridae . We determined that OPMV accumulates two similarly sized subgenomic RNAs (sgRNAs), with the smaller known to code for proteins expressed from overlapping open reading frames. The slightly larger sgRNA1 has a 5′ end just upstream from a previously predicted xrRNA D site, identifying this sgRNA as an unusually long product produced by exoribonuclease trimming. Although four umbraviruses have similar predicted xrRNA D sites, only sgRNA1 of OPMV can code for a protein that is an extension product of umbravirus ORF4. Inability to generate the sgRNA or translate this protein was associated with reduced gRNA accumulation in vivo . We also characterized the OPMV BTE structure, a 3′ cap-independent translation enhancer (3′ CITE). Comparisons of 13 BTEs with the OPMV BTE revealed additional stretches of sequence similarity beyond the 17-nt signature sequence, as well as conserved structural features not previously recognized in these 3′ CITEs. 
    more » « less