skip to main content


Search for: All records

Award ID contains: 1818592

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent progresses in artificial intelligence and machine learning make it possible to automatically identify seismic phases from exponentially growing seismic data. Despite some exciting successes in automatic picking of the first P‐ and S‐wave arrivals, auto‐identification of later seismic phases such as the Moho‐reflected PmP waves remains a significant challenge in matching the performance of experienced analysts. The main difficulty of machine‐identifying PmP waves is that the identifiable PmP waves are rare, making the problem of identifying the PmP waves from a massive seismic database inherently unbalanced. In this work, by utilizing a high‐quality PmP data set (10,192 manual picks) in southern California, we develop PmPNet, a deep‐neural‐network‐based algorithm to automatically identify PmP waves efficiently; by doing so, we accelerate the process of identifying the PmP waves. PmPNet applies similar techniques in the machine learning community to address the unbalancement of PmP datasets. The architecture of PmPNet is a residual neural network (ResNet)‐autoencoder with additional predictor block, where encoder, decoder, and predictor are equipped with ResNet connection. We conduct systematic research with field data, concluding that PmPNet can efficiently achieve high precision and high recall simultaneously to automatically identify PmP waves from a massive seismic database. Applying the pre‐trained PmPNet to the seismic database from January 1990 to December 1999 in southern California, we obtain nearly twice more PmP picks than the original PmP data set, providing valuable data for other studies such as mapping the topography of the Moho discontinuity and imaging the lower crust structures of southern California.

     
    more » « less
  2. . Computed Tomography (CT) takes X-ray measurements on the subjects to reconstruct tomographic images. As X-ray is radioactive, it is desirable to control the total amount of dose of X-ray for safety concerns. Therefore, we can only select a limited number of measurement angles and assign each of them limited amount of dose. Traditional methods such as compressed sensing usually randomly select the angles and equally distribute the allowed dose on them. In most CT reconstruction models, the emphasize is on designing effective image representations, while much less emphasize is on improving the scanning strategy. The simple scanning strategy of random angle selection and equal dose distribution performs well in general, but they may not be ideal for each individual subject. It is more desirable to design a personalized scanning strategy for each subject to obtain better reconstruction result. In this paper, we propose to use Reinforcement Learning (RL) to learn a personalized scanning policy to select the angles and the dose at each chosen angle for each individual subject. We first formulate the CT scanning process as an Markov Decision Process (MDP), and then use modern deep RL methods to solve it. The learned personalized scanning strategy not only leads to better reconstruction results, but also shows strong generalization to be combined with different reconstruction algorithms.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)