skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1818716

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It has been proposed that classical filtering methods, like the Kalman filter and 3DVAR, can be used to solve linear statistical inverse problems. In the work of Iglesias, Lin, Lu, and Stuart (Commun. Math. Sci. 15(7):1867–1896, 2017), error estimates were obtained for this approach. By optimally tuning a regularization parameter in the filters, the authors were able to show that the mean squared error could be systematically reduced. Building on the aforementioned work of Iglesias, Lin, Lu, and Stuart, we prove that by (i) considering the problem in a weaker norm and (ii) applying simple iterate averaging of the filter output, 3DVAR will converge in mean square, unconditionally on the choice of parameter. Without iterate averaging, 3DVAR cannot converge by running additional iterations with a fixed choice of parameter. We also establish that the Kalman filter’s performance in this setting cannot be improved through iterate averaging. We illustrate our results with numerical experiments that suggest our convergence rates are sharp. 
    more » « less
  2. null (Ed.)