skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iterate averaging, the Kalman filter, and 3DVAR for linear inverse problems
It has been proposed that classical filtering methods, like the Kalman filter and 3DVAR, can be used to solve linear statistical inverse problems. In the work of Iglesias, Lin, Lu, and Stuart (Commun. Math. Sci. 15(7):1867–1896, 2017), error estimates were obtained for this approach. By optimally tuning a regularization parameter in the filters, the authors were able to show that the mean squared error could be systematically reduced. Building on the aforementioned work of Iglesias, Lin, Lu, and Stuart, we prove that by (i) considering the problem in a weaker norm and (ii) applying simple iterate averaging of the filter output, 3DVAR will converge in mean square, unconditionally on the choice of parameter. Without iterate averaging, 3DVAR cannot converge by running additional iterations with a fixed choice of parameter. We also establish that the Kalman filter’s performance in this setting cannot be improved through iterate averaging. We illustrate our results with numerical experiments that suggest our convergence rates are sharp.  more » « less
Award ID(s):
1818716
PAR ID:
10378921
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Numerical Algorithms
ISSN:
1017-1398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Bronchoscopic diagnosis and intervention in the lung is a new frontier for steerable needles, where they have the potential to enable minimally invasive, accurate access to small nodules that cannot be reliably accessed today. However, the curved, flexible bronchoscope requires a much longer needle than prior work has considered, with complex interactions between the needle and bronchoscope channel, introducing new challenges in steerable needle control. In particular, friction between the working channel and needle causes torsional windup along the bronchoscope, the effects of which cannot be directly measured at the tip of thin needles embedded with 5 degree-of-freedom magnetic tracking coils. To compensate for these effects, we propose a new torsional deadband-aware Extended Kalman Filter to estimate the full needle tip pose including the axial angle, which defines its steering direction. We use the Kalman Filter estimates with an established sliding mode controller to steer along desired trajectories in lung tissue. We demonstrate that this simple torsional deadband model is sufficient to account for the complex interactions between the needle and endoscope channel for control purposes. We measure mean final targeting error of 1.36 mm in phantom tissue and 1.84 mm in ex-vivo porcine lung, with mean trajectory following error of 1.28 mm and 1.10 mm, respectively. 
    more » « less
  2. Proliferation of distributed Cyber-Physical Systems has raised the need for developing computationally efficient security solutions. Toward this objective, distributed state estimators that can withstand attacks on agents (or nodes) of the system have been developed, but many of these works consider the estimation error to asymptotically converge to zero by restricting the number of agents that can be compromised. We propose Resilient Distributed Kalman Filter (RDKF), a novel distributed algorithm that estimates states within an error bound and does not depend on the number of agents that can be compromised by an attack. Our method is based on convex optimization and performs well in practice, which we demonstrate with the help of a simulation example. We theoretically show that, in a connected network, the estimation error generated by the Distributed Kalman Filter and our RDKF at each agent converges to zero in an attack free and noise free scenario. Furthermore, our resiliency analysis result shows that the RDKF algorithm bounds the disturbance on the state estimate caused by an attack. 
    more » « less
  3. null (Ed.)
    We discuss a novel method to train a neural network from noisy data, using Optimal Transport based filtering. We show a comparative study of this methodology with three other filters: the Extended Kalman filter, the Ensemble Kalman filter, and the Unscented Kalman filter, that can also be used for the purpose of training a neural network. We empirically establish that Optimal Transport based filter performs better than the other three filters with respect to root mean square error measure, for non-Gaussian noise in the output. We demonstrate the efficacy of utilizing the Optimal Transport based filtering for neural network training in the context of predicting Mackey-Glass chaotic time series data. 
    more » « less
  4. An immense volume of data is produced by sensor devices in the fields of aquaponics, hydroponics, and soil-based food production, where these devices track various environmental factors. Data stream mining is the method of retrieving data from fast-sampled data sources that are constantly streaming. The accuracy of data obtained through data stream mining is largely determined by the algorithm utilized to filter out noise. For threshold-based automation, an actuator can be activated when the value of sensor data is above a permissible threshold. Noise from sensors may activate the actuator. Several statistical and machine learning-based noise-suppression algorithms have been proposed in the literature. They have been evaluated based on the mean squared error metric (MSE). The Long Short-Term Memory – LSTM filter (MSE: 0.000999943) performs better noise suppression than other traditional filters – Kalman (MSE: 0.0015982). We propose a new noise suppression filter – LSTM combined with Kalman (LSTM-KF). In LSTM-KF, the Kalman filter acts as an encoder and the LSTM becomes the decoder, resulting in a significantly lower MSE – 0.000080789592. The LSTM-KF is installed in our threshold-based aquaponics automation to maximize sustainable food production at minimum cost. 
    more » « less
  5. System identification poses a significant bottleneck to characterizing and controlling complex systems. This challenge is greatest when both the system states and parameters are not directly accessible, leading to a dual-estimation problem. Current approaches to such problems are limited in their ability to scale with many-parameter systems, as often occurs in networks. In the current work, we present a new, computationally efficient approach to treat large dual-estimation problems. In this work, we derive analytic back-propagated gradients for the Prediction Error Method which enables efficient and accurate identification of large systems. The PEM approach consists of directly integrating state estimation into a dual-optimization objective, leaving a differentiable cost/error function only in terms of the unknown system parameters, which we solve using numerical gradient/Hessian methods. Intuitively, this approach consists of solving for the parameters that generate the most accurate state estimator (Extended/Cubature Kalman Filter). We demonstrate that this approach is at least as accurate in state and parameter estimation as joint Kalman Filters (Extended/Unscented/Cubature) and Expectation-Maximization, despite lower complexity. We demonstrate the utility of our approach by inverting anatomically-detailed individualized brain models from human magnetoencephalography (MEG) data. 
    more » « less