skip to main content


Search for: All records

Award ID contains: 1820565

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding of phase‐stability and nanoscale structural modulation during lithiation of layer materials demand comprehensive analysis of the Li‐containing phases in the solid‐state reaction products. Conventional chemical analysis methods in the transmission electron microscope (TEM) are not ideal to detect Li in partially intercalated nanodomains because Li atoms do not remain stationary under the focused electron beam. An alternate approach combining density functional theory (DFT) modeling and multislice image simulation has been explored in the present study to analyze the intercalated structures and to detect and quantify Li from the recorded high‐resolution TEM (HRTEM) micrographs of partially intercalated phases. HRTEM micrographs from partially lithiated graphite and MoS2show variations in the interlayer spacings, but are not usually directly interpretable. Hypothetical intercalated microstructures of graphite and MoS2supercells have been generated using atomic‐scale simulations with systematically varying Li concentrations. The measured interplanar spacings are compared with those of experimentally recorded HRTEM micrographs from lithiated graphite and MoS2. The results confirm the coexistence of different lithiated phases at localized domains. This understanding of phase transformation and the lithium quantification provides a basis for understanding the structural accommodation of layered materials during intercalation.

     
    more » « less
  2. Abstract

    Li-ion batteries function by Li intercalating into and through the layered electrode materials. Intercalation is a solid-state interaction resulting in the formation of new phases. The new observations presented here reveal that at the nanoscale the intercalation mechanism is fundamentally different from the existing models and is actually driven by nonuniform phase distributions rather than the localized Li concentration: the lithiation process is a ‘distribution-dependent’ phenomena. Direct structure imaging of 2H and 1T dual-phase microstructures in lithiated MoS2and WS2along with the localized chemical segregation has been demonstrated in the current study. Li, a perennial challenge for the TEM, is detected and imaged using a low-dose, direct-electron detection camera on an aberration-corrected TEM and confirmed by image simulation. This study shows the presence of fully lithiated nanoscale domains of 2D host matrix in the vicinity of Li-lean regions. This confirms the nanoscale phase formation followed by Oswald ripening, where the less-stable smaller domains dissolves at the expense of the larger and more stable phases.

     
    more » « less
  3. Abstract

    Layered transition‐metal dichalcogenides (TMDs) have shown promise to replace carbon‐based compounds as suitable anode materials for Lithium‐ion batteries (LIBs) owing to facile intercalation and de‐intercalation of lithium (Li) during charging and discharging, respectively. While the intercalation mechanism of Li in mono‐ and bi‐layer TMDs has’ been thoroughly examined, mechanistic understanding of Li intercalation‐induced phase transformation in bulk or films of TMDs is still largely unexplored. This study investigates possible scenarios during sequential Li intercalation and aims to gain a mechanistic understanding of the phase transformation in bulk MoS2using density functional theory (DFT) calculations. The manuscript examines the role of concentration and distribution of Li‐ions on the formation of dual‐phase 2H‐1T microstructures that have been observed experimentally. The study demonstrates that lithiation would proceed in a systematic layer‐by‐layer manner wherein Li‐ions diffuse into successive interlayer spacings to render local phase transformation of the adjacent MoS2layers from 2H‐to‐1T phase in the multilayered MoS2. This local phase transition is attributed to partial ionization of Li and charge redistribution around the metal atoms and is followed by subsequent lattice straining. In addition, the stability of single‐phase vs. multiphase intercalated microstructures, and the origins of structural changes accompanying Li‐ion insertion are investigated at atomic scales.

     
    more » « less
  4. Cryogenic transmission electron microscopy is simply transmission electron microscopy conducted on specimens that are cooled in the microscope. The target temperature of the specimen might range from just below ambient temperature to less than 4 K. In general, as the temperature decreases, cost increases, especially below –77°C when liquid He is required. We have two reasons for wanting to cool the specimen—improving stability of the material or observing a material whose properties change at lower temperatures. Both types of study have a long history. The cause of excitement in this field today is that we have a perfect storm of research activity—electron microscopes are almost stable with minimal drift (we can correct what drift there is), we can prepare specimens from the bulk or build them up, we have spherical-aberration-corrected lenses and monochromated beams, we have direct-electron-detector cameras, and computers are becoming powerful enough to handle all the data we produce. 
    more » « less