skip to main content


Search for: All records

Award ID contains: 1821231

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Accurate classification of high‐dimensional data is important in many scientific applications. We propose a family of high‐dimensional classification methods based upon a comparison of the component‐wise distances of the feature vector of a sample to the within‐class population quantiles. These methods are motivated by the fact that quantile classifiers based on these component‐wise distances are the most powerful univariate classifiers for an optimal choice of the quantile level. A simple aggregation approach for constructing a multivariate classifier based upon these component‐wise distances to the within‐class quantiles is proposed. It is shown that this classifier is consistent with the asymptotically optimal classifier as the sample size increases. Our proposed classifiers result in simple piecewise‐linear decision rule boundaries that can be efficiently trained. Numerical results are shown to demonstrate competitive performance for the proposed classifiers on both simulated data and a benchmark email spam application.

     
    more » « less
  2. null (Ed.)
  3. Summary We consider scenarios in which the likelihood function for a semiparametric regression model factors into separate components, with an efficient estimator of the regression parameter available for each component. An optimal weighted combination of the component estimators, named an ensemble estimator, may be employed as an overall estimate of the regression parameter, and may be fully efficient under uncorrelatedness conditions. This approach is useful when the full likelihood function may be difficult to maximize, but the components are easy to maximize. It covers settings where the nuisance parameter may be estimated at different rates in the component likelihoods. As a motivating example we consider proportional hazards regression with prospective doubly censored data, in which the likelihood factors into a current status data likelihood and a left-truncated right-censored data likelihood. Variable selection is important in such regression modelling, but the applicability of existing techniques is unclear in the ensemble approach. We propose ensemble variable selection using the least squares approximation technique on the unpenalized ensemble estimator, followed by ensemble re-estimation under the selected model. The resulting estimator has the oracle property such that the set of nonzero parameters is successfully recovered and the semiparametric efficiency bound is achieved for this parameter set. Simulations show that the proposed method performs well relative to alternative approaches. Analysis of an AIDS cohort study illustrates the practical utility of the method. 
    more » « less