skip to main content


Search for: All records

Award ID contains: 1821389

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Silicatein is an enzyme that mineralizes environmental precursors to patterned nanomaterials and is found naturally orchestrating the complex and beautiful exoskeletons of marine sponges. To harness this activity for nanomaterial biomanufacturing, enzyme solubility and stability have been widely studied. We address the enzyme's solubility challenge via protein fusion tags: enhanced green fluorescent protein (eGFP), monomeric superfolder GFP (msGFP2), and trigger factor (TF). All three silicatein fusion proteins form oligomers to varying degrees, that are partially modulated by disulfide bridges. Biomineralization activity was assessed with silica and nanoceria, showing comparable yields for eGFP-silicatein and TF-silicatein, as well as identical composition of mineralized products regardless of disulfide bridge reduction, shown via XRD characterization of silicatein's nanocrystalline product. This implies that solubility has only minor effects on silicatein activity and that continued improvement in this area is currently inessential. Furthermore, these results suggest that silicatein biomineralization activity is inherent to the enzyme itself. Thus, future studies should be aimed at understanding silicatein's kinetic mechanisms. 
    more » « less
  2. If hydrogen evolution photocatalysis are to be deployed at industrial scale, the synthesis of these photocatalytic materials must be both economically and environmentally scalable. This suggests that we must move towards green synthesis of earth-abundant photocatalysts while also maintaining high catalytic performance. Herein, we present the enzymatically driven, aqueous phase, low temperature, synthesis of an earth-abundant nickel sulfide (Ni x S y ) hydrogen evolution cocatalyst, and its integration into a CdS/Ni x S y heterostructured photocatalyst. This resulting photocatalyst provides hydrogen evolution rates (10 500 μmol h −1 g −1 ) comparable to photocatalysts prepared by more traditional routes. Furthermore, the Ni x S y is demonstrated to provide similar activity enhancement to the more traditional, but also more expensive platinum cocatalysts. To achieve this result, we carefully studied and engineered the synthesis environment to maintain enzyme activity towards HS − production while sustaining a sufficient concentration of free Ni 2+ in solution to enable reaction and formation of Ni x S y . Ultimately, this work provides a methodology to control the coordination of metal precursors in low temperature, aqueous systems to allow for precipitation of catalytically active materials and demonstrates the viability of green synthesis pathways for photocatalysts. 
    more » « less
  3. The development of high quality, non-toxic ( i.e. , heavy-metal-free), and functional quantum dots (QDs) via ‘green’ and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag + cation exchange and Zn 2+ addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In 2 S 3 precursor nanocrystals, and the subsequent addition of Zn 2+ as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a ‘green’ and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of ‘green’, compositionally diverse QDs. 
    more » « less
  4. Photocatalysis is an attractive, sustainable, and potentially low-cost route to capture solar energy as fuel. However, current photocatalytic materials synthesis routes are not easily scaled-up to the magnitude required to impact our energy consumption due to both economic and environmental concerns. While the elements utilized are often earth abundant, typical synthetic routes utilize organic solvents at elevated temperatures with relatively expensive precursors. Herein, we demonstrate the fully biomineralized synthesis of a quantum confined CdS/reduced graphene oxide (CdS/rGO) photocatalyst catalyzed by the single enzyme cystathionine γ-lyase (CSE). The synthesis is performed at pH 9 in a buffered aqueous solution, under ambient conditions, and utilizes the low-cost precursors Cd acetate, l -cysteine, graphene oxide, and a poly- l -lysine linker molecule. CSE actively decomposes l -cysteine to generate reactive HS − in aqueous solution at pH 9. Careful selection and control of the synthesis conditions enable both reduction of graphene oxide to rGO, and control over the mean CdS nanocrystal size. The CdS is conjugated to the rGO via a poly- l -lysine crosslinker molecule introduced during rGO formation. The completed CdS/rGO photocatalyst is capable of producing H 2 , without the aid of a noble metal co-catalyst, at a rate of 550 μmol h −1 g −1 for an optimized CdS/rGO ratio. This rate is double that measured for unsupported CdS and is comparable to CdS/rGO photocatalysts produced using more typical chemical synthesis routes. Single enzyme biomineralization by CSE can produce a range of metal chalcogenides without altering the enzyme or benign approach, making this an easily adaptable procedure for the sustainable production of a wide variety of important photocatalyst systems. 
    more » « less