skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sequential, low-temperature aqueous synthesis of Ag–In–S/Zn quantum dots via staged cation exchange under biomineralization conditions
The development of high quality, non-toxic ( i.e. , heavy-metal-free), and functional quantum dots (QDs) via ‘green’ and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag + cation exchange and Zn 2+ addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In 2 S 3 precursor nanocrystals, and the subsequent addition of Zn 2+ as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a ‘green’ and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of ‘green’, compositionally diverse QDs.  more » « less
Award ID(s):
1821389
PAR ID:
10391342
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry B
Volume:
10
Issue:
24
ISSN:
2050-750X
Page Range / eLocation ID:
4529 to 4545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All‐inorganic CsPbI3quantum dots (QDs) have shown great potential in photovoltaic applications. However, their performance has been limited by defects and phase stability. Herein, an anion/cation synergy strategy to improve the structural stability of CsPbI3QDs and reduce the pivotal iodine vacancy (VI) defect states is proposed. The Zn‐doped CsPbI3(Zn:CsPbI3) QDs have been successfully synthesized employing ZnI2as the dopant to provide Zn2+and extra I. Theoretical calculations and experimental results demonstrate that the Zn:CsPbI3QDs show better thermodynamic stability and higher photoluminescence quantum yield (PLQY) compared to the pristine CsPbI3QDs. The doping of Zn in CsPbI3QDs increases the formation energy and Goldschmidt tolerance factor, thereby improving the thermodynamic stability. The additional Ihelps to reduce theVIdefects during the synthesis of CsPbI3QDs, resulting in the higher PLQY. More importantly, the synergistic effect of Zn2+and Iin CsPbI3QDs can prevent the iodine loss during the fabrication of CsPbI3QD film, inhibiting the formation of newVIdefect states in the construction of solar cells. Consequently, the anion/cation synergy strategy affords the CsPbI3quantum dot solar cells (QDSC) a power conversion efficiency over 16%, which is among the best efficiencies for perovskite QDSCs. 
    more » « less
  2. Abstract Precise patterning of quantum dot (QD) layers is an important prerequisite for fabricating QD light‐emitting diode (QLED) displays and other optoelectronic devices. However, conventional patterning methods cannot simultaneously meet the stringent requirements of resolution, throughput, and uniformity of the pattern profile while maintaining a high photoluminescence quantum yield (PLQY) of the patterned QD layers. Here, a specially designed nanocrystal ink is introduced, “photopatternable emissive nanocrystals” (PENs), which satisfies these requirements. Photoacid generators in the PEN inks allow photoresist‐free, high‐resolution optical patterning of QDs through photochemical reactions and in situ ligand exchange in QD films. Various fluorescence and electroluminescence patterns with a feature size down to ≈1.5 µm are demonstrated using red, green, and blue PEN inks. The patterned QD films maintain ≈75% of original PLQY and the electroluminescence characteristics of the patterned QLEDs are comparable to thopse of non‐patterned control devices. The patterning mechanism is elucidated by in‐depth investigation of the photochemical transformations of the photoacid generators and changes in the optical properties of the QDs at each patterning step. This advanced patterning method provides a new way for additive manufacturing of integrated optoelectronic devices using colloidal QDs. 
    more » « less
  3. Abstract Metal cation‐doped lead halide perovskite (LHP) quantum dots (QDs) with photoluminescence quantum yields (PLQYs) higher than unity, due to quantum cutting phenomena, are an important building block of the next‐generation renewable energy technologies. However, synthetic route exploration and development of the highest‐performing QDs for device applications remain challenging. In this work, Smart Dope is presented, which is a self‐driving fluidic lab (SDFL), for the accelerated synthesis space exploration and autonomous optimization of LHP QDs. Specifically, the multi‐cation doping of CsPbCl3QDs using a one‐pot high‐temperature synthesis chemistry is reported. Smart Dope continuously synthesizes multi‐cation‐doped CsPbCl3QDs using a high‐pressure gas‐liquid segmented flow format to enable continuous experimentation with minimal experimental noise at reaction temperatures up to 255°C. Smart Dope offers multiple functionalities, including accelerated mechanistic studies through digital twin QD synthesis modeling, closed‐loop autonomous optimization for accelerated QD synthetic route discovery, and on‐demand continuous manufacturing of high‐performing QDs. Through these developments, Smart Dope autonomously identifies the optimal synthetic route of Mn‐Yb co‐doped CsPbCl3QDs with a PLQY of 158%, which is the highest reported value for this class of QDs to date. Smart Dope illustrates the power of SDFLs in accelerating the discovery and development of emerging advanced energy materials. 
    more » « less
  4. Post-synthetic phase transfer ligand exchange has been established as a simple, reliable, and versatile method for the synthesis of chiral, optically active colloidal nanocrystals displaying circular dichroism (CD) and circularly polarized luminescence (CPL). Herein we present a water-free and purification-free cyclohexane → methanol ligand exchange system that led to the synthesis of stable, non-aggregating chiral and fluorescent cadmium sulfide quantum dots (CdS QDs). Absorption and emission studies revealed that the carboxylate capping ligands can tune the band gap by up to 65 meV as well as control the band gap and deep trap emission pathways. The CD data revealed that the addition of a 2nd stereogenic center did not automatically lead to an increase of the CD anisotropy of QDs, but rather match/mismatch cooperativity effects must be considered in the transfer of the chirality from the capping ligands to the achiral nanocrystals. Variation in position of the functional groups as well as the chemical identity of the functional groups impacted both the shape and anisotropy of the induced CD spectra and revealed the importance of the functional groups’ coordination and polarity on the binding geometry and induced chiroptical properties. Finally, we describe the first example where CD spectra of QDs capped with the same ligand and dissolved in the same solvent displayed very different spectral profiles. This work provides deeper insight into induced CD of QDs and paves the path to rational design of chiral nanomaterials. 
    more » « less
  5. We designed a novel multicoordinating ligand based on the N-heterocyclic carbene (NHC) anchoring molecules and applied them for stabilizing luminescent quantum dots in aqueous media. The ligand is synthesized via nucleophilic addition reaction between amine-appended imidazole/poly(ethylene glycol) compounds and poly(isobutylene-alt-maleic anhydride) (PIMA), followed by carbene generation. We find that these NHC-based polymers exhibit fast and robust coordinating affinity to CdSe QDs overcoated with ZnS shells. The removal of hydrophobic coating and the generation of carbene are demonstrated by 1H NMR spectroscopy. 13C NMR spectroscopy confirms the existence of carbene-Zn complexes which is crucial for binding transition-metals on QD surfaces. These QDs exhibit absorption and emission features with little to no change before and after cap exchange, and their PL intensity is increased under light exposure. Excellent colloidal stability of these QD samples is observed in a wide range of competitive conditions over long period of time. Agarose gel electrophoresis indicates that the polymer coating imparts QDs with good compatibility in different aqueous buffers, and it prevents protein adsorption. 
    more » « less