skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1822085

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial intelligence (AI) provides versatile capabilities in applications such as image classification and voice recognition that are most useful in edge or mobile computing settings. Shrinking these sophisticated algorithms into small form factors with minimal computing resources and power budgets requires innovation at several layers of abstraction: software, algorithmic, architectural, circuit, and device-level innovations. However, improvements to system efficiency may impact robustness and vice-versa. Therefore, a co-design framework is often necessary to customize a system for its given application. A system that prioritizes efficiency might use circuit-level innovations that introduce process variations or signal noise into the system, which may use software-level redundancy in order to compensate. In this tutorial, we will first examine various methods of improving efficiency and robustness in edge AI and their tradeoffs at each level of abstraction.Then, we will outline co-design techniques for designing efficient and robust edge AI systems, using federated learning as a specific example to illustrate the effectiveness of co-design. 
    more » « less
    Free, publicly-accessible full text available May 31, 2026
  2. Approximate nearest neighbor search (ANNS) is a key retrieval technique for vector database and many data center applications, such as person re-identification and recommendation systems. It is also fundamental to retrieval augmented generation (RAG) for large language models (LLM) now. Among all the ANNS algorithms, graph-traversal-based ANNS achieves the highest recall rate. However, as the size of dataset increases, the graph may require hundreds of gigabytes of memory, exceeding the main memory capacity of a single workstation node. Although we can do partitioning and use solid-state drive (SSD) as the backing storage, the limited SSD I/O bandwidth severely degrades the performance of the system. To address this challenge, we present NDSEARCh, a hardware-software co-designed near-data processing (NDP) solution for ANNS processing. NDSeARCH consists of a novel in-storage computing architecture, namely, SEARSSD, that supports the ANNS kernels and leverages logic unit (LUN)-level parallelism inside the NAND flash chips. NDSEARCH also includes a processing model that is customized for NDP and cooperates with SearSSD. The processing model enables us to apply a two-level scheduling to improve the data locality and exploit the internal bandwidth in NDSearch, and a speculative searching mechanism to further accelerate the ANNS workload. Our results show that NDSEARCH improves the throughput by up to 31.7×,14.6×,7.4×, and 2.9× over CPU, GPU, a state-of-the-art SmartSSD-only design, and DeepStore, respectively. NDSEARCH also achieves two orders-of-magnitude higher energy efficiency than CPU and GPU. 
    more » « less
  3. The COVID-19 pandemic has intensified the need for home-based cardiac health monitoring systems. Despite advancements in electrocardiograph (ECG) and phonocardiogram (PCG) wearable sensors, accurate heart sound segmentation algorithms remain understudied. Existing deep learning models, such as convolutional neural networks (CNN) and recurrent neural networks (RNN), struggle to segment noisy signals using only PCG data. We propose a two-step heart sound segmentation algorithm that analyzes synchronized ECG and PCG signals. The first step involves heartbeat detection using a CNN-LSTM-based model on ECG data, and the second step focuses on beat-wise heart sound segmentation with a 1D U-Net that incorporates multi-modal inputs. Our method leverages temporal correlation between ECG and PCG signals to enhance segmentation performance. To tackle the label-hungry issue in AI-supported biomedical studies, we introduce a segment-wise contrastive learning technique for signal segmentation, overcoming the limitations of traditional contrastive learning methods designed for classification tasks. We evaluated our two-step algorithm using the PhysioNet 2016 dataset and a private dataset from Bayland Scientific, obtaining a 96.43 F1 score on the former. Notably, our segment-wise contrastive learning technique demonstrated effective performance with limited labeled data. When trained on just 1% of labeled PhysioNet data, the model pre-trained on the full unlabeled dataset only dropped 2.88 in the F1 score, outperforming the SimCLR method. Overall, our proposed algorithm and learning technique present promise for improving heart sound segmentation and reducing the need for labeled data. 
    more » « less
  4. Natural Adversarial Examples (NAEs), images arising naturally from the environment and capable of deceiving classifiers, are instrumental in robustly evaluating and identifying vulnerabilities in trained models. In this work, unlike prior works that passively collect NAEs from real images, we propose to actively synthesize NAEs using the state-of-the-art Stable Diffusion. Specifically, our method formulates a controlled optimization process, where we perturb the token embedding that corresponds to a specified class to generate NAEs. This generation process is guided by the gradient of loss from the target classifier, ensuring that the created image closely mimics the ground-truth class yet fools the classifier. Named SD-NAE (Stable Diffusion for Natural Adversarial Examples), our innovative method is effective in producing valid and useful NAEs, which is demonstrated through a meticulously designed experiment. Code is available at https://github.com/linyueqian/SD-NAE. 
    more » « less
  5. Recommendation systems have been widely embedded into many Internet services. For example, Meta’s deep learning recommendation model (DLRM) shows high predictive accuracy of click-through rate in processing large-scale embedding tables. The SparseLengthSum (SLS) kernel of the DLRM dominates the inference time of the DLRM due to intensive irregular memory accesses to the embedding vectors. Some prior works directly adopt near-data processing (NDP) solutions to obtain higher memory bandwidth to accelerate SLS. However, their inferior memory hierarchy induces a low performance-cost ratio and fails to fully exploit the data locality. Although some software-managed cache policies were proposed to improve the cache hit rate, the incurred cache miss penalty is unacceptable considering the high overheads of executing the corresponding programs and the communication between the host and the accelerator. To address the issues aforementioned, we proposeEMS-i, an efficient memory system design that integrates Solid State Drive (SSD) into the memory hierarchy using Compute Express Link (CXL) for recommendation system inference. We specialize the caching mechanism according to the characteristics of various DLRM workloads and propose a novel prefetching mechanism to further improve the performance. In addition, we delicately design the inference kernel and develop a customized mapping scheme for SLS operation, considering the multi-level parallelism in SLS and the data locality within a batch of queries. Compared to the state-of-the-art NDP solutions,EMS-iachieves up to 10.9× speedup over RecSSD and the performance comparable to RecNMP with 72% energy savings.EMS-ialso saves up to 8.7× and 6.6 × memory cost w.r.t. RecSSD and RecNMP, respectively. 
    more » « less
  6. Due to the often limited communication bandwidth of edge devices, most existing federated learning (FL) methods randomly select only a subset of devices to participate in training at each communication round. Compared with engaging all the available clients, such a random-selection mechanism could lead to significant performance degradation on non-IID (independent and identically distributed) data. In this paper, we present our key observation that the essential reason resulting in such performance degradation is the class-imbalance of the grouped data from randomly selected clients. Based on this observation, we design an efficient heterogeneity-aware client sampling mechanism, namely, Federated Class-balanced Sampling (Fed-CBS), which can effectively reduce class-imbalance of the grouped dataset from the intentionally selected clients. We first propose a measure of class-imbalance which can be derived in a privacy-preserving way. Based on this measure, we design a computationefficient client sampling strategy such that the actively selected clients will generate a more classbalanced grouped dataset with theoretical guarantees. Experimental results show that Fed-CBS outperforms the status quo approaches in terms of test accuracy and the rate of convergence while achieving comparable or even better performance than the ideal setting where all the available clients participate in the FL training. 
    more » « less
  7. Knowledge Distillation (KD) (Hinton et al., 2015) is one of the most effective approaches for deploying large-scale pre-trained language models in low-latency environments by transferring the knowledge contained in the largescale models to smaller student models. Previous KD approaches use the soft labels and intermediate activations generated by the teacher to transfer knowledge to the student model parameters alone. In this paper, we show that having access to non-parametric memory in the form of a knowledge base with the teacher’s soft labels and predictions can further enhance student capacity and improve generalization. To enable the student to retrieve from the knowledge base effectively, we propose a new Retrieval-augmented KD framework with a loss function that aligns the relational knowledge in teacher and student embedding spaces. We show through extensive experiments that our retrieval mechanism can achieve state-of-the-art performance for taskspecific knowledge distillation on the GLUE benchmark (Wang et al., 2018a). 
    more » « less